File size: 7,874 Bytes
54199b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import warnings
from dataclasses import dataclass, asdict
from typing import Any, Dict, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
import torchvision.transforms.functional as F
from functools import partial
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
    CenterCrop

from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD


@dataclass
class AugmentationCfg:
    scale: Tuple[float, float] = (0.9, 1.0)
    ratio: Optional[Tuple[float, float]] = None
    color_jitter: Optional[Union[float, Tuple[float, float, float]]] = None
    interpolation: Optional[str] = None
    re_prob: Optional[float] = None
    re_count: Optional[int] = None
    use_timm: bool = False


class ResizeMaxSize(nn.Module):

    def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
        super().__init__()
        if not isinstance(max_size, int):
            raise TypeError(f"Size should be int. Got {type(max_size)}")
        self.max_size = max_size
        self.interpolation = interpolation
        self.fn = min if fn == 'min' else min
        self.fill = fill

    def forward(self, img):
        if isinstance(img, torch.Tensor):
            height, width = img.shape[1:]
        else:
            width, height = img.size
        scale = self.max_size / float(max(height, width))
        if scale != 1.0:
            new_size = tuple(round(dim * scale) for dim in (height, width))
            img = F.resize(img, new_size, self.interpolation)
            pad_h = self.max_size - new_size[0]
            pad_w = self.max_size - new_size[1]
            img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
        return img


def _convert_to_rgb_or_rgba(image):
    if image.mode == 'RGBA':
        return image
    else:
        return image.convert('RGB')

# def transform_and_split(merged, transform_fn, normalize_fn):
#     transformed = transform_fn(merged)
#     crop_img, crop_label = torch.split(transformed, [3,1], dim=0)

#     # crop_img = _convert_to_rgb(crop_img)
#     crop_img = normalize_fn(ToTensor()(crop_img))
#     return crop_img, crop_label

class MaskAwareNormalize(nn.Module):
    def __init__(self, mean, std):
        super().__init__()
        self.normalize = Normalize(mean=mean, std=std)

    def forward(self, tensor):
        if tensor.shape[0] == 4:
            return torch.cat([self.normalize(tensor[:3]), tensor[3:]], dim=0)
        else:
            return self.normalize(tensor)

def image_transform(
        image_size: int,
        is_train: bool,
        mean: Optional[Tuple[float, ...]] = None,
        std: Optional[Tuple[float, ...]] = None,
        resize_longest_max: bool = False,
        fill_color: int = 0,
        aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
    mean = mean or OPENAI_DATASET_MEAN
    if not isinstance(mean, (list, tuple)):
        mean = (mean,) * 3

    std = std or OPENAI_DATASET_STD
    if not isinstance(std, (list, tuple)):
        std = (std,) * 3

    if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
        # for square size, pass size as int so that Resize() uses aspect preserving shortest edge
        image_size = image_size[0]

    if isinstance(aug_cfg, dict):
        aug_cfg = AugmentationCfg(**aug_cfg)
    else:
        aug_cfg = aug_cfg or AugmentationCfg()
    normalize = MaskAwareNormalize(mean=mean, std=std)
    if is_train:
        aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
        use_timm = aug_cfg_dict.pop('use_timm', False)
        if use_timm:
            assert False, "not tested for augmentation with mask"
            from timm.data import create_transform  # timm can still be optional
            if isinstance(image_size, (tuple, list)):
                assert len(image_size) >= 2
                input_size = (3,) + image_size[-2:]
            else:
                input_size = (3, image_size, image_size)
            # by default, timm aug randomly alternates bicubic & bilinear for better robustness at inference time
            aug_cfg_dict.setdefault('interpolation', 'random')
            aug_cfg_dict.setdefault('color_jitter', None)  # disable by default
            train_transform = create_transform(
                input_size=input_size,
                is_training=True,
                hflip=0.,
                mean=mean,
                std=std,
                re_mode='pixel',
                **aug_cfg_dict,
            )
        else:
            train_transform = Compose([
                _convert_to_rgb_or_rgba,
                ToTensor(),
                RandomResizedCrop(
                    image_size,
                    scale=aug_cfg_dict.pop('scale'),
                    interpolation=InterpolationMode.BICUBIC,
                ),
                normalize,
            ])
            if aug_cfg_dict:
                warnings.warn(f'Unused augmentation cfg items, specify `use_timm` to use ({list(aug_cfg_dict.keys())}).')
        return train_transform
    else:
        transforms = [
            _convert_to_rgb_or_rgba,
            ToTensor(),
        ]
        if resize_longest_max:
            transforms.extend([
                ResizeMaxSize(image_size, fill=fill_color)
            ])
        else:
            transforms.extend([
                Resize(image_size, interpolation=InterpolationMode.BICUBIC),
                CenterCrop(image_size),
            ])
        transforms.extend([
            normalize,
        ])
        return Compose(transforms)


# def image_transform_region(
#         image_size: int,
#         is_train: bool,
#         mean: Optional[Tuple[float, ...]] = None,
#         std: Optional[Tuple[float, ...]] = None,
#         resize_longest_max: bool = False,
#         fill_color: int = 0,
#         aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
# ):
#     mean = mean or OPENAI_DATASET_MEAN
#     if not isinstance(mean, (list, tuple)):
#         mean = (mean,) * 3

#     std = std or OPENAI_DATASET_STD
#     if not isinstance(std, (list, tuple)):
#         std = (std,) * 3

#     if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]:
#         # for square size, pass size as int so that Resize() uses aspect preserving shortest edge
#         image_size = image_size[0]

#     if isinstance(aug_cfg, dict):
#         aug_cfg = AugmentationCfg(**aug_cfg)
#     else:
#         aug_cfg = aug_cfg or AugmentationCfg()
#     normalize = Normalize(mean=mean, std=std)
#     if is_train:
#         aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
        
#         transform = Compose([
#                 RandomResizedCrop(
#                     image_size,
#                     scale=aug_cfg_dict.pop('scale'),
#                     interpolation=InterpolationMode.BICUBIC,
#                 ),
#                 ])
#         train_transform = Compose([
#             partial(transform_and_split, transform_fn=transform,normalize_fn=normalize)
#         ])
#         return train_transform
#     else:
#         if resize_longest_max:
#             transform = [
#                 ResizeMaxSize(image_size, fill=fill_color)
#             ]
#             val_transform = Compose([
#                 partial(transform_and_split, transform_fn=transform,normalize_fn=normalize),
#             ])
#         else:
#             transform = [
#                 Resize(image_size, interpolation=InterpolationMode.BICUBIC),
#                 CenterCrop(image_size),
#             ]
#             val_transform = Compose([
#                 partial(transform_and_split, transform_fn=transform,normalize_fn=normalize),
#             ])
#         return val_transform