Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
from src.open_clip import create_model_and_transforms, get_tokenizer | |
import warnings | |
import argparse | |
warnings.filterwarnings("ignore", category=UserWarning) | |
# Create an argument parser | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--image_path', type=str, required=True, help='Path to the input image') | |
parser.add_argument('--prompt', type=str, required=True, help='Text prompt') | |
parser.add_argument('--checkpoint', type=str, default='../HPSv2.pt', help='Path to the model checkpoint') | |
args = parser.parse_args() | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model, preprocess_train, preprocess_val = create_model_and_transforms( | |
'ViT-H-14', | |
'laion2B-s32B-b79K', | |
precision='amp', | |
device=device, | |
jit=False, | |
force_quick_gelu=False, | |
force_custom_text=False, | |
force_patch_dropout=False, | |
force_image_size=None, | |
pretrained_image=False, | |
image_mean=None, | |
image_std=None, | |
light_augmentation=True, | |
aug_cfg={}, | |
output_dict=True, | |
with_score_predictor=False, | |
with_region_predictor=False | |
) | |
checkpoint = torch.load(args.checkpoint) | |
model.load_state_dict(checkpoint['state_dict']) | |
tokenizer = get_tokenizer('ViT-H-14') | |
model.eval() | |
# Load your image and prompt | |
with torch.no_grad(): | |
# Process the image | |
image = preprocess_val(Image.open(args.image_path)).unsqueeze(0).to(device=device, non_blocking=True) | |
# Process the prompt | |
text = tokenizer([args.prompt]).to(device=device, non_blocking=True) | |
# Calculate the HPS | |
with torch.cuda.amp.autocast(): | |
outputs = model(image, text) | |
image_features, text_features = outputs["image_features"], outputs["text_features"] | |
logits_per_image = image_features @ text_features.T | |
hps_score = torch.diagonal(logits_per_image).cpu().numpy() | |
print('HPSv2 score:', hps_score[0]) | |