import glob import json import logging import os import re import subprocess import sys import random from datetime import datetime import numpy as np import torch from torch import optim from torch.cuda.amp import GradScaler try: import torch.utils.tensorboard as tensorboard except ImportError: tensorboard = None try: import horovod.torch as hvd except ImportError: hvd = None from .open_clip import create_model_and_transforms, trace_model, get_tokenizer from .data import get_data, PreferenceDataset, RegionDataset, RankingDataset, ImageRewardDataset, HPDDataset from .distributed import is_master, init_distributed_device, broadcast_object, barrier from .logger import setup_logging from .params import parse_args from .scheduler import cosine_lr, const_lr, const_lr_cooldown from .train import evaluate_ranking, train_iters, evaluate_preference, evaluate_regional, unwrap_model from .file_utils import pt_load, save_ckpt, start_sync_process, remote_sync LATEST_CHECKPOINT_NAME = "latest.pt" def random_seed(seed=42, rank=0): torch.manual_seed(seed + rank) np.random.seed(seed + rank) random.seed(seed + rank) def natural_key(string_): """See http://www.codinghorror.com/blog/archives/001018.html""" return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] def get_latest_checkpoint(path: str, remote : bool): # as writen, this glob recurses, so can pick up checkpoints across multiple sub-folders if remote: result = subprocess.run(["aws", "s3", "ls", path + "/"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) print(result) if result.returncode == 1: return None checkpoints = [os.path.join(path, x.split(' ')[-1]) for x in result.stdout.decode().split('\n')[:-1]] else: checkpoints = glob.glob(path + '**/*.pt', recursive=True) if checkpoints: checkpoints = sorted(checkpoints, key=natural_key) return checkpoints[-1] return None def do_eval(data, model, args, out_dict=None): if out_dict is None: out_dict = {} for d in data['val']: if isinstance(d.dataloader.dataset, PreferenceDataset): out_dict['pref_acc'] = evaluate_preference(model, d, args) if isinstance(d.dataloader.dataset, RegionDataset): out_dict['iou'] = evaluate_regional(model, d, args) if isinstance(d.dataloader.dataset, RankingDataset): out_dict['ranking_acc'] = evaluate_ranking(model, d, args) if isinstance(d.dataloader.dataset, ImageRewardDataset): out_dict['ImageReward_acc'] = evaluate_ranking(model, d, args) return out_dict def main(rank, args): if rank is not None: assert int(os.environ['WORLD_SIZE']) <= 8, "currently only support single node training" os.environ['LOCAL_RANK'] = str(rank) os.environ['RANK'] = str(rank) if torch.cuda.is_available(): # This enables tf32 on Ampere GPUs which is only 8% slower than # float16 and almost as accurate as float32 # This was a default in pytorch until 1.12 torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False # fully initialize distributed device environment device = init_distributed_device(args) # get the name of the experiments if args.name is None: # sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule? model_name_safe = args.model.replace('/', '-') date_str = datetime.now().strftime("%Y_%m_%d-%H_%M_%S") if args.distributed: # sync date_str from master to all ranks date_str = broadcast_object(args, date_str) args.name = '-'.join([ date_str, f"model_{model_name_safe}", f"lr_{args.lr}", f"b_{args.batch_size}", f"j_{args.workers}", f"p_{args.precision}", ]) resume_latest = args.resume == 'latest' log_base_path = os.path.join(args.logs, args.name) args.log_path = None if is_master(args, local=args.log_local): os.makedirs(log_base_path, exist_ok=True) log_filename = f'out-{args.rank}' if args.log_local else 'out.log' args.log_path = os.path.join(log_base_path, log_filename) if os.path.exists(args.log_path) and not resume_latest: print( "Error. Experiment already exists. Use --name {} to specify a new experiment." ) return -1 # Setup text logger args.log_level = logging.DEBUG if args.debug else logging.INFO setup_logging(args.log_path, args.log_level) # Setup tensorboard, checkpoint logging args.tensorboard = 'tensorboard' in args.report_to or 'all' in args.report_to args.checkpoint_path = os.path.join(log_base_path, "checkpoints") if is_master(args): args.tensorboard_path = os.path.join(log_base_path, "tensorboard") if args.tensorboard else '' for dirname in [args.tensorboard_path, args.checkpoint_path]: if dirname: os.makedirs(dirname, exist_ok=True) else: args.tensorboard_path = '' if resume_latest: resume_from = None checkpoint_path = args.checkpoint_path # If using remote_sync, need to check the remote instead of the local checkpoints folder. if args.remote_sync is not None: checkpoint_path = os.path.join(args.remote_sync, args.name, "checkpoints") if args.save_most_recent: print('Error. Cannot use save-most-recent with remote_sync and resume latest.') return -1 if args.remote_sync_protocol != 's3': print('Error. Sync protocol not supported when using resume latest.') return -1 if is_master(args): # Checking for existing checkpoint via master rank only. It is possible for # different rank processes to see different files if a shared file-system is under # stress, however it's very difficult to fully work around such situations. if args.save_most_recent: # if --save-most-recent flag is set, look for latest at a fixed filename resume_from = os.path.join(checkpoint_path, LATEST_CHECKPOINT_NAME) if not os.path.exists(resume_from): # If no latest checkpoint has been saved yet, don't try to resume resume_from = None else: # otherwise, list checkpoint dir contents and pick the newest checkpoint resume_from = get_latest_checkpoint(checkpoint_path, remote=args.remote_sync is not None) if resume_from: logging.info(f'Found latest resume checkpoint at {resume_from}.') else: logging.info(f'No latest resume checkpoint found in {checkpoint_path}.') if args.distributed: # sync found checkpoint path to all ranks resume_from = broadcast_object(args, resume_from) args.resume = resume_from # start the sync proces if remote-sync is not None remote_sync_process = None if is_master(args) and args.remote_sync is not None: # first make sure it works result = remote_sync( os.path.join(args.logs, args.name), os.path.join(args.remote_sync, args.name), args.remote_sync_protocol ) if result: logging.info('remote sync successful.') else: logging.info('Error: remote sync failed. Exiting.') return -1 # if all looks good, start a process to do this every args.remote_sync_frequency seconds remote_sync_process = start_sync_process( args.remote_sync_frequency, os.path.join(args.logs, args.name), os.path.join(args.remote_sync, args.name), args.remote_sync_protocol ) remote_sync_process.start() if args.precision == 'fp16': logging.warning( 'It is recommended to use AMP mixed-precision instead of FP16. ' 'FP16 support needs further verification and tuning, especially for train.') if args.horovod: logging.info( f'Running in horovod mode with multiple processes / nodes. Device: {args.device}.' f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.') elif args.distributed: logging.info( f'Running in distributed mode with multiple processes. Device: {args.device}.' f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.') else: logging.info(f'Running with a single process. Device {args.device}.') dist_model = None args.distill = args.distill_model is not None and args.distill_pretrained is not None if args.distill: #FIXME: support distillation with grad accum. assert args.accum_freq == 1 #FIXME: support distillation with coca. assert 'coca' not in args.model.lower() if isinstance(args.force_image_size, (tuple, list)) and len(args.force_image_size) == 1: # arg is nargs, single (square) image size list -> int args.force_image_size = args.force_image_size[0] random_seed(args.seed, 0) model, preprocess_train, preprocess_val = create_model_and_transforms( args.model, args.pretrained, precision=args.precision, device=device, jit=args.torchscript, force_quick_gelu=args.force_quick_gelu, force_custom_text=args.force_custom_text, force_patch_dropout=args.force_patch_dropout, force_image_size=args.force_image_size, pretrained_image=args.pretrained_image, image_mean=args.image_mean, image_std=args.image_std, light_augmentation=args.light_augmentation, aug_cfg=args.aug_cfg, output_dict=True, with_score_predictor='rating' in args.dataset_type or args.no_text_condition, with_region_predictor='regional' in args.dataset_type ) if args.distill: # FIXME: currenlty assumes the model your distilling from has the same tokenizer & transforms. dist_model, _, _ = create_model_and_transforms( args.distill_model, args.distill_pretrained, device=device, precision=args.precision, output_dict=True, ) random_seed(args.seed, args.rank) if args.trace: model = trace_model(model, batch_size=args.batch_size, device=device) if args.lock_image: # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 model.lock_image_tower( unlocked_groups=args.lock_image_unlocked_groups, freeze_bn_stats=args.lock_image_freeze_bn_stats) if args.lock_text: model.lock_text_tower( unlocked_layers=args.lock_text_unlocked_layers, freeze_layer_norm=args.lock_text_freeze_layer_norm) if args.grad_checkpointing: model.set_grad_checkpointing() if is_master(args): logging.info("Model:") logging.info(f"{str(model)}") logging.info("Params:") params_file = os.path.join(args.logs, args.name, "params.txt") with open(params_file, "w") as f: for name in sorted(vars(args)): val = getattr(args, name) logging.info(f" {name}: {val}") f.write(f"{name}: {val}\n") if args.distributed and not args.horovod: if args.use_bn_sync: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) ddp_args = {} if args.ddp_static_graph: # this doesn't exist in older PyTorch, arg only added if enabled ddp_args['static_graph'] = True model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device], find_unused_parameters=True,**ddp_args) if args.distill: dist_model = torch.nn.parallel.DistributedDataParallel(dist_model, device_ids=[device], **ddp_args) # create optimizer and scaler optimizer = None scaler = None if args.train_data or args.dataset_type == "synthetic": assert not args.trace, 'Cannot train with traced model' exclude = lambda n, p: p.ndim < 2 or "bn" in n or "ln" in n or "bias" in n or 'logit_scale' in n include = lambda n, p: not exclude(n, p) named_parameters = list(model.named_parameters()) gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad] rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad] optimizer = optim.AdamW( [ {"params": gain_or_bias_params, "weight_decay": 0.}, {"params": rest_params, "weight_decay": args.wd}, ], lr=args.lr, betas=(args.beta1, args.beta2), eps=args.eps, ) if args.horovod: optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters()) hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) scaler = GradScaler() if args.precision == "amp" else None # optionally resume from a checkpoint start_iterations = 0 if args.resume is not None: checkpoint = pt_load(args.resume, map_location='cpu') if 'iterations' in checkpoint: # resuming a train checkpoint w/ epoch and optimizer state start_iterations = checkpoint["iterations"] sd = checkpoint["state_dict"] if not args.distributed and next(iter(sd.items()))[0].startswith('module'): sd = {k[len('module.'):]: v for k, v in sd.items()} model.load_state_dict(sd) if optimizer is not None: optimizer.load_state_dict(checkpoint["optimizer"]) if scaler is not None and 'scaler' in checkpoint: scaler.load_state_dict(checkpoint['scaler']) logging.info(f"=> resuming checkpoint '{args.resume}' (iterations {start_iterations})") else: # loading a bare (model only) checkpoint for fine-tune or evaluation model.load_state_dict(checkpoint) logging.info(f"=> loaded checkpoint '{args.resume}' (iterations {start_iterations})") # initialize datasets data = get_data(args, (preprocess_train, preprocess_val), epoch=0, tokenizer=get_tokenizer(args.model)) assert len(data), 'At least one train or eval dataset must be specified.' # create scheduler if train scheduler = None if 'train' in data and optimizer is not None : total_steps = (args.iterations // args.world_size) * args.world_size if args.lr_scheduler == "cosine": scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps) elif args.lr_scheduler == "const": scheduler = const_lr(optimizer, args.lr, args.warmup, total_steps) elif args.lr_scheduler == "const-cooldown": assert args.epochs_cooldown is not None cooldown_steps = (args.iters_cooldown // args.world_size) * args.world_size scheduler = const_lr_cooldown( optimizer, args.lr, args.warmup, total_steps, cooldown_steps, args.lr_cooldown_power, args.lr_cooldown_end) else: logging.error( f'Unknown scheduler, {args.lr_scheduler}. Available options are: cosine, const, const-cooldown.') exit(1) # determine if this worker should save logs and checkpoints. only do so if it is rank == 0 args.save_logs = args.logs and args.logs.lower() != 'none' and is_master(args) writer = None if args.save_logs and args.tensorboard: assert tensorboard is not None, "Please install tensorboard." writer = tensorboard.SummaryWriter(args.tensorboard_path) out_dict = {} if 'train' not in data: out_dict = do_eval(data, model, args, out_dict=out_dict) return out_dict iterations = args.iterations - start_iterations if is_master(args): logging.info(f'Start training for {iterations} iterations.' f'with sample ratio {args.train_data_sample_ratio}' ) # train first args.start_eval_iters to stablize model train_iters(model, data, iterations, optimizer, scaler, scheduler, dist_model, args, tb_writer=writer) barrier(args) # final eval after training if 'val' in data: out_dict = do_eval(data, model, args, out_dict=out_dict) if is_master(args): logging.info( f"finished iterations [ {iterations} / {iterations} ] " f"rank acc {out_dict['ranking_acc']} " ) if args.save_path is not None: save_ckpt(args, model, scaler, optimizer) barrier(args) # run a final sync. if remote_sync_process is not None: logging.info('Final remote sync.') remote_sync_process.terminate() result = remote_sync( os.path.join(args.logs, args.name), os.path.join(args.remote_sync, args.name), args.remote_sync_protocol ) if result: logging.info('Final remote sync successful.') else: logging.info('Final remote sync failed.') if is_master(args): with open("result.json", "w") as f: json.dump(out_dict, f) return out_dict if __name__ == "__main__": args = parse_args(sys.argv[1:]) main(None, args)