File size: 6,307 Bytes
a1f93e9
 
b6dd571
d72c532
459fbe3
5799733
d72c532
8988bbf
 
 
 
 
 
 
a1f93e9
b6dd571
7085eea
 
 
b099d9e
 
 
a1f93e9
7085eea
2e0b320
4e4c514
2e0b320
4e4c514
 
 
 
 
 
 
2e0b320
 
d72c532
8988bbf
2e0b320
 
3ac04fa
f0929ee
 
 
 
 
 
 
 
7085eea
 
b6dd571
 
 
f0929ee
b6dd571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7085eea
f0929ee
b6dd571
f0929ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5799733
 
b099d9e
e52ef2a
 
d72c532
e52ef2a
d89d143
e52ef2a
 
411027b
e52ef2a
459fbe3
 
 
f0929ee
 
459fbe3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
"""
import gradio

import config
from app_util import *

system_list = [
    "You are a helpful assistant.",
    "你是一个导游。",
    "你是一个英语老师。",
    "你是一个程序员。",
    "你是一个心理咨询师。",
]

user_simulator_doc = """\
There are maily two types of user simulator:
- prompt-based user-simulator (role-play)
- model-based user-simulator

In most cases, large language models (LLMs) are used to serve as assistant generator.
Besides, it can also used as user simulator.
"""

survey = """\
## knowledge distillation 知识蒸馏

Essentially, it is a form of model compression.

## distilling knowledge != knowledge distillation

知识的形式可以是 QA纯文本,也可以是 QA+概率。

## 有不用概率的知识蒸馏吗?
"""

with gr.Blocks() as demo:
    # Knowledge Distillation through Self Chatting
    #
    gr.HTML("""<h1 align="center">Distilling the Knowledge from LLM through Self Chatting</h1>""")
    with gr.Row():
        with gr.Column(scale=5):
            system = gr.Dropdown(
                choices=system_list,
                value=system_list[0],
                allow_custom_value=True,
                interactive=True,
                label="System message",
                scale=5,
            )

            chatbot = gr.Chatbot(show_copy_button=True,
                                 show_share_button=True,
                                 avatar_images=("assets/man.png", "assets/bot.png"))

            with gradio.Tab("Self Chat"):
                generated_text_1 = gr.Textbox(show_label=False, placeholder="...", lines=10, visible=False)
                generate_btn = gr.Button("🤔️ Self-Chat", variant="primary")
                with gr.Row():
                    retry_btn = gr.Button("🔄  Retry", variant="secondary", size="sm", )
                    undo_btn = gr.Button("↩️ Undo", variant="secondary", size="sm", )
                    clear_btn = gr.Button("🗑️  Clear", variant="secondary", size="sm", )  # 🧹 Clear History (清除历史)
                    # stop_btn = gr.Button("停止生成", variant="stop", visible=False)
                gr.Markdown(
                    "Self-chat is a demo, which makes the model talk to itself. "
                    "It is based on user simulator and response generator.",
                    visible=True)

            with gradio.Tab("Response Generator"):
                with gr.Row():
                    generated_text_2 = gr.Textbox(show_label=False, placeholder="Please type your input", scale=7)
                    generate_btn_2 = gr.Button("Send", variant="primary")
                with gr.Row():
                    retry_btn_2 = gr.Button("🔄  Regenerate", variant="secondary", size="sm", )
                    undo_btn_2 = gr.Button("↩️ Undo", variant="secondary", size="sm", )
                    clear_btn_2 = gr.Button("🗑️  Clear", variant="secondary", size="sm", )  # 🧹 Clear History (清除历史)
                gr.Markdown("Response simulator is the most commonly used chatbot.")

            with gradio.Tab("User Simulator"):
                with gr.Row():
                    generated_text_3 = gr.Textbox(show_label=False, placeholder="Please type your response", scale=7)
                    generate_btn_3 = gr.Button("Send", variant="primary")
                with gr.Row():
                    retry_btn_3 = gr.Button("🔄  Regenerate", variant="secondary", size="sm", )
                    undo_btn_3 = gr.Button("↩️ Undo", variant="secondary", size="sm", )
                    clear_btn_3 = gr.Button("🗑️  Clear", variant="secondary", size="sm", )  # 🧹 Clear History (清除历史)
                gr.Markdown(user_simulator_doc)

        with gr.Column(variant="compact"):
            # with gr.Column():
            model = gr.Dropdown(
                ["Qwen2-0.5B-Instruct", "llama3.1", "gemini"],
                value="Qwen2-0.5B-Instruct",
                label="Model",
                interactive=True,
                # visible=False
            )
            with gr.Accordion(label="Parameters", open=True):
                slider_max_tokens = gr.Slider(minimum=1, maximum=config.MAX_SEQUENCE_LENGTH,
                                              value=config.DEFAULT_MAX_TOKENS, step=1, label="Max tokens")
                slider_temperature = gr.Slider(minimum=0.1, maximum=10.0,
                                               value=config.DEFAULT_TEMPERATURE, step=0.1, label="Temperature",
                                               info="Larger temperature increase the randomness")
                slider_top_p = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=config.DEFAULT_TOP_P,
                    step=0.05,
                    label="Top-p (nucleus sampling)",
                )
                slider_top_k = gr.Slider(
                    minimum=1,
                    maximum=200,
                    value=config.DEFAULT_TOP_K,
                    step=1,
                    label="Top-k",
                )

    ########
    history = gr.State([{"role": "system", "content": system_list[0]}])  # 有用信息只有个system,其他和chatbot内容重叠
    system.change(reset_state, inputs=[system], outputs=[chatbot, history])
    clear_btn.click(reset_state, inputs=[system], outputs=[chatbot, history])

    generate_btn.click(generate, [chatbot, history], outputs=[generated_text_1, chatbot, history],
                       show_progress="full")
    retry_btn.click(undo_generate, [chatbot, history], outputs=[generated_text_1, chatbot, history]) \
        .then(generate, [chatbot, history], outputs=[generated_text_1, chatbot, history],
              show_progress="full")
    undo_btn.click(undo_generate, [chatbot, history], outputs=[generated_text_1, chatbot, history])

    slider_max_tokens.change(set_max_tokens, inputs=[slider_max_tokens])
    slider_temperature.change(set_temperature, inputs=[slider_temperature])
    slider_top_p.change(set_top_p, inputs=[slider_top_p])
    slider_top_k.change(set_top_k, inputs=[slider_top_k])

# demo.queue().launch(share=False, server_name="0.0.0.0")
# demo.queue().launch(concurrency_count=1, max_size=5)
demo.queue().launch()