Spaces:
Running
Running
File size: 13,069 Bytes
7c73423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""
## more statistics
code:
math:
digit:
whitespace:
top_oov: most frequent oov chars
ranking: thumb_up thumb_down
"""
import json
import os
import sys
from difflib import SequenceMatcher
import pandas as pd
from datasets import load_dataset
from utils.log_util import logger
from vocab import tokenizer_factory, TokenizerConfig
from typing import List, Optional, Union, Literal
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
common_units = ["g_bytes/b_tokens", "b_tokens/g_bytes", "t_bytes/t_tokens", "t_tokens/t_bytes", "n_chars/n_tokens", ]
common_corpuses = sorted(["cc100/en", "cc100/zh-Hans", "cc100/es", "cc100/fr", "cc100/de", "cc100/ko",
"cc100/fa", "cc100/ar", "cc100/ja"])
VALID_CODES_CC100 = [
"am", "ar", "as", "az", "be", "bg", "bn", "bn_rom", "br", "bs", "ca", "cs", "cy", "da", "de",
"el", "en", "eo", "es", "et", "eu", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gn", "gu",
"ha", "he", "hi", "hi_rom", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka",
"kk", "km", "kn", "ko", "ku", "ky", "la", "lg", "li", "ln", "lo", "lt", "lv", "mg", "mk", "ml",
"mn", "mr", "ms", "my", "my_zaw", "ne", "nl", "no", "ns", "om", "or", "pa", "pl", "ps", "pt",
"qu", "rm", "ro", "ru", "sa", "si", "sc", "sd", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv",
"sw", "ta", "ta_rom", "te", "te_rom", "th", "tl", "tn", "tr", "ug", "uk", "ur", "ur_rom", "uz",
"vi", "wo", "xh", "yi", "yo", "zh-Hans", "zh-Hant", "zu",
]
# code: https://huggingface.co/datasets/codeparrot/github-code-clean python java c sql html
# math:
def get_n_bytes_of_string(string_text):
n_bytes = len(string_text.encode("utf-8"))
return n_bytes
def unit_convertor(stat, unit):
n_tokens = stat["_n_tokens"]
n_chars = stat["_n_chars"]
n_bytes = stat["_n_bytes"]
if n_tokens is None:
return None
n_tokens_in_billion = n_tokens / (1000 * 1000 * 1000)
n_tokens_in_trillion = n_tokens / (1000 * 1000 * 1000 * 1000)
n_bytes_in_mb = n_bytes / (1024 * 1024)
n_bytes_in_gb = n_bytes_in_mb / 1024
n_bytes_in_tb = n_bytes_in_gb / 1024
# n_chars_in_billion = n_chars / (1000 * 1000 * 1000)
if unit == "n_tokens/n_bytes":
value = n_tokens / n_bytes
elif unit in ["char/token", "chars_per_token"]: # 重要:平均一个token包含多少个字符。
value = n_chars / n_tokens
elif unit in ["token/char", "tokens_per_char"]: # 一个中文汉字需要几个token?
value = n_tokens / n_chars
elif unit == "g_bytes/b_tokens":
value = n_bytes_in_gb / n_tokens_in_billion
elif unit == "b_tokens/g_bytes":
value = n_tokens_in_billion / n_bytes_in_gb
elif unit == "t_bytes/t_tokens": # 重要:
value = n_bytes_in_tb / n_tokens_in_trillion
elif unit == "t_tokens/t_bytes":
value = n_tokens_in_trillion / n_bytes_in_tb
else:
raise "measure not support"
return round(value, 3)
def _merge_stats_by_corpus(stats_by_corpus, oov_threshold=0.3):
"""
"""
all_stats = list(stats_by_corpus.values())
assert len(set([stats["tokenizer"] for stats in all_stats])) == 1
lossless = all(stat['lossless'] for stat in all_stats)
is_support = all(stat['oov_ratio'] < oov_threshold for stat in all_stats)
merged_stats = {
"tokenizer": all_stats[0]["tokenizer"],
"organization": all_stats[0]["organization"],
"vocab_size": all_stats[0]["vocab_size"],
"_n_bytes": 0,
"_n_tokens": 0 if is_support else None,
"_n_chars": 0,
"_n_oov_chars": 0,
"lossless": True,
}
for stats in all_stats:
merged_stats["_n_bytes"] += stats["_n_bytes"]
merged_stats["_n_chars"] += stats["_n_chars"]
if is_support: # The number of tokens cannot be accurately counted, when there are too many UNKs.
merged_stats["_n_tokens"] += stats["_n_tokens"]
merged_stats["_n_oov_chars"] += stats["_n_oov_chars"]
merged_stats["lossless"] &= stats['lossless']
merged_stats.update({
"oov_ratio": float("%.4g" % (stats["_n_oov_chars"] / stats["_n_chars"])),
"lossless": lossless
})
return merged_stats
def to_dataframe(stats, units=None):
if units is None:
units = common_units
elif not isinstance(units, list):
units = [units]
table = []
for stat in stats.values():
columns = {k: v for k, v in stat.items() if not k.startswith("_")}
for unit in units:
if unit not in stat:
columns[unit] = unit_convertor(stat, unit)
else:
logger.error(f"unit {unit} not support")
table.append(columns)
df = pd.DataFrame(table)
return df
cache = {}
def tokenize_corpus(
tokenizer_name: str,
corpuses: List[str],
cache_dir: str = "stats"
) -> dict:
"""
:param tokenizer_name:
:param corpuses:
:param cache_dir:
:return:
"""
def _assert_oov(tokenizer, oov_candidate):
tokenizer.encode()
def _char_based_oov(src_text, decoded_text, tokenizer):
oov_charset = [] # keep the order in src_text
decoded_charset = set(decoded_text)
for char in dict.fromkeys(src_text):
if char not in decoded_charset \
and char != tokenizer.decode(tokenizer.encode(char, add_special_tokens=False)):
oov_charset.append(char)
n_oov_chars = sum([1 for char in src_text if char in oov_charset])
return n_oov_chars, oov_charset
def _diff_path(src_text, decoded_text):
s = SequenceMatcher(a=src_text, b=decoded_text)
changes = []
for tag, i1, i2, j1, j2 in s.get_opcodes():
if tag != "equal":
changes.append('{:7} text[{}:{}] --> decoded_text[{}:{}] {!r:>8} --> {!r}'.format(
tag, i1, i2, j1, j2, src_text[i1:i2], decoded_text[j1:j2]))
return changes
def _tokenize(tokenizer, datasets, detail_path=None):
"""
:param tokenizer:
:param datasets:
:param detail_path:
:return:
"""
n_bytes = 0
n_tokens = 0
n_chars = 0
n_oov_chars = 0
diff_details = []
oov_charset = set()
unk_token_id = None
if hasattr(tokenizer, "unk_token"):
unk_token_id = tokenizer.unk_token_id
for dataset in datasets:
for item in dataset:
text = item["text"]
n_bytes += get_n_bytes_of_string(text)
n_chars += len(text)
ids = tokenizer.encode(text, add_special_tokens=False)
# detect oov
decoded_text = tokenizer.decode(ids)
decoded_text_without_unk = tokenizer.decode([token_id for token_id in ids if token_id != unk_token_id])
if decoded_text != text:
_n_oov_chars, _oov_charset = _char_based_oov(text, decoded_text_without_unk, tokenizer)
diffs = _diff_path(text, decoded_text)
diff_details.append(
{
"text": text,
"decoded_text": decoded_text,
"diff": diffs,
"n_oov_chars": _n_oov_chars,
'oov_ratio': _n_oov_chars / len(text),
'oov_charset': json.dumps(_oov_charset, ensure_ascii=False),
}
)
n_oov_chars += _n_oov_chars
oov_charset.update(_oov_charset)
n_tokens += len(ids)
stat = {
"_n_bytes": n_bytes,
"_n_tokens": n_tokens,
"_n_chars": n_chars,
"_n_oov_chars": n_oov_chars,
"oov_ratio": n_oov_chars / n_chars,
'_oov_charset': json.dumps(list(oov_charset), ensure_ascii=False),
"lossless": len(diff_details) == 0
}
if detail_path and diff_details:
logger.info(f"saving tokenization detail to '{detail_path}'")
with open(detail_path, "w", encoding="utf-8") as f:
f.write(json.dumps(diff_details, ensure_ascii=False, indent=2))
# print(f"{tokenizer_config.name_or_path}, {infer_tokenizer_type(tokenizer_config)}\n"
# f"lossless: false; unk_token: {get_unk(tokenizer_config)},"
# f" unk_ratio: {unk_count / len(encoding):.4f}; oov: []")
# for diff_detail in diff_details:
# # print(f"text[{i}] = {str(bytes(text[i:], 'utf-8'))}\n"
# # f"decoding[{i}] = {str(bytes(decoding[i:], 'utf-8'))}")
# f.write(f"text= {json.dumps(text[i:], ensure_ascii=False)}, \n"
# f"decoding[{i}] = {json.dumps(decoding[i:], ensure_ascii=False)}")
return stat
# load from cache
cache_id = f"{tokenizer_name} @ {'.'.join(corpuses)}"
cache_path = os.path.join(cache_dir, "compression_rate.json")
if not cache and os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f_tmp:
cache.update(json.load(f_tmp))
if cache_id in cache:
# logger.info(f"loading {cache_id} from in-memory cache")
return cache[cache_id]
# tokenize corpus
tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name)
datasets = [load_dataset("eson/cc100-samples", corpus.replace("cc100/", ""), split="train") for corpus in corpuses]
stat = {
"tokenizer": tokenizer_factory.get_name_with_hyperlink(tokenizer_name),
"organization": tokenizer_factory.get_tokenizer_config(tokenizer_name).org,
"vocab_size": len(tokenizer),
}
tokenize_detail_dir = os.path.join(cache_dir, "compression_rate")
os.makedirs(tokenize_detail_dir, exist_ok=True)
tokenize_detail_path = os.path.join(tokenize_detail_dir, cache_id.replace("/", ".") + ".diff.json")
stat.update(_tokenize(tokenizer, datasets, detail_path=tokenize_detail_path))
# add basic info
# save to cache
len_before = len(cache)
cache[cache_id] = stat
len_after = len(cache)
logger.info(f"saving '{cache_id}' to memory and file cache '{cache_path}': {len_before}->{len_after}")
with open(cache_path, "w", encoding="utf-8") as f_tmp:
json.dump(cache, f_tmp, ensure_ascii=False, indent=2)
return stat
def get_compression_leaderboard(
corpuses: List[str] = ['cc100/en'],
unit: str = "b_tokens/g_bytes",
tokenizer_filter: Optional[str] = None,
return_type: Optional[Literal["dict", "dataframe"]] = "dataframe"
) -> Union[pd.DataFrame, dict]:
"""
"""
logger.info(f"corpuses: {corpuses}; unit: {unit}; tokenizer_filter: {tokenizer_filter}")
stats = {}
if tokenizer_filter is not None:
tokenizer_names = [tokenizer_name for tokenizer_name in tokenizer_factory.all_tokenizer_names
if tokenizer_filter.lower() in tokenizer_name.lower()]
else:
tokenizer_names = tokenizer_factory.all_tokenizer_names
for tokenizer_name in tokenizer_names:
stats_by_corpus = {}
for corpus in corpuses:
stats_by_corpus[corpus] = tokenize_corpus(tokenizer_name, [corpus])
stats[tokenizer_name] = _merge_stats_by_corpus(stats_by_corpus)
if return_type == "dataframe":
token_number_unit, file_size_unit = unit.split("/")
reverse_unit = f"{file_size_unit}/{token_number_unit}"
stats = to_dataframe(stats, [unit, reverse_unit, "char/token"])
stats = stats.sort_values(["oov_ratio", unit], ascending=[True, True])
stats = stats.rename(columns={"oov_ratio": f' ⬆️oov_ratio'}).rename(columns={unit: f' ⬆️{unit}'}) # ⬇
return stats
def main():
if len(sys.argv) == 3:
tokenizer_filter = [sys.argv[1]]
corpuses = [sys.argv[2]]
else:
tokenizer_filter, corpuses = None, common_corpuses
# tokenizer_filter, corpuses = "openai", ["cc100/en", "cc100/zh-Hans"]
# tokenizer_filter, corpuses = "Qwen/Qwen1.5-14B", ["cc100/de"]
# tokenizer_filter, corpuses = "Qwen/Qwen1.5-14B", ["cc100/ja"] # oov 特别多
# tokenizer_filter, corpuses = "google-bert/bert-base-uncased", ["cc100/ja", "cc100/zh-Hans"] # oov 特别多
df = get_compression_leaderboard(corpuses, tokenizer_filter=tokenizer_filter)
# print(df.to_markdown(index=False, tablefmt='fancy_grid'))
logger.info(f"\n{df.to_markdown(index=False)}")
if __name__ == "__main__":
main()
|