File size: 6,917 Bytes
751936e
f4973d4
751936e
 
 
 
1b7fc74
814ee6b
1b7fc74
 
 
751936e
 
 
f4973d4
814ee6b
f4973d4
751936e
1b7fc74
 
 
 
 
 
 
814ee6b
 
 
751936e
 
 
 
 
 
f4973d4
 
 
751936e
 
 
 
 
 
814ee6b
 
 
 
 
751936e
 
 
 
 
 
 
 
 
 
f4973d4
 
 
 
 
 
 
 
 
 
 
d10ecd7
 
1b7fc74
 
 
 
814ee6b
 
 
 
 
 
 
 
 
1b7fc74
f4973d4
751936e
1b7fc74
 
 
 
814ee6b
 
 
 
 
 
 
 
 
 
f4973d4
 
 
 
 
751936e
 
814ee6b
f4973d4
 
 
 
 
814ee6b
 
f4973d4
 
 
 
 
c75633b
1b7fc74
 
 
 
814ee6b
 
 
 
1b7fc74
814ee6b
 
 
 
1b7fc74
814ee6b
 
 
 
f4973d4
1b7fc74
 
 
 
 
814ee6b
f4973d4
814ee6b
f4973d4
 
 
814ee6b
 
c75633b
814ee6b
1b7fc74
814ee6b
f4973d4
 
814ee6b
 
 
 
 
 
 
 
 
751936e
814ee6b
751936e
814ee6b
751936e
 
 
d10ecd7
1b7fc74
751936e
1b7fc74
814ee6b
 
 
751936e
 
 
1b7fc74
 
 
 
 
 
 
 
751936e
1b7fc74
814ee6b
 
 
 
 
1b7fc74
d10ecd7
751936e
 
1b7fc74
 
 
 
751936e
 
 
 
9495a4f
814ee6b
f4973d4
 
1b7fc74
 
 
 
 
 
 
 
 
 
 
 
814ee6b
f4973d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""
TODO: 繁体、简体、语种、
"""
import os
import json
from collections import Counter
from vocab import load_tokener
from utils.log_util import logger
from utils.text_util import is_all_digit, has_digit, get_digit_count, get_space_count
from utils.lang_util import detect_language
from utils.lang_util_2 import is_zh_char, is_all_zh, get_zh_count

CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))

zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if
             is_zh_char(line.strip())]


def digit_():
    """
    qwen segments numbers by single digits.
    """
    pass


def to_unicode(text):
    return ''.join(r'\u{:04X}'.format(ord(chr)) for chr in text)

def zh_iterator():
    for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
        yield (chr(idx))


def get_coding_length(tokenizer, vocab, filter=None):
    """
    计算编码长度。(有些中文汉字被解码成多个token)
    """
    all_length = []
    for word in vocab:
        if len(word) > 1:
            continue
        if filter is not None and filter(word):
            continue
        try:
            tokens = tokenizer.encode(word)
        except Exception as e:
            print(e)

        all_length.append(len(tokens))
        # if len(tokens.ids) > 1:
        # if len(tokens) > 3:
        #     print(word, tokens)

    dist_length = Counter(all_length)
    mean_length = round(sum(all_length) / len(all_length), 2)
    return dist_length, mean_length



def remove_special_char():
    """
    :return:
    """
    # bert词典有 ##开头的
    # byteBPE词典有带空格的
    # decode_str = decode_str.strip().replace("#", "")  # TODO, 按类型
    pass


cache = {}

def _mean(datas):
    return sum(datas) / len(datas)

def iter_vocab(tokenizer_name, from_cache=True, cache_dir="stats/iter_vocab"):
    """
    由于速度较快,建议不采用文件缓存。
    :param tokenizer:
    :param from_cache:
    :return:
    """
    cache_dir = os.path.join(CURRENT_DIR, f"../{cache_dir}")
    os.makedirs(cache_dir, exist_ok=True)

    tokenizer = load_tokener(tokenizer_name)


    # load from cache
    if from_cache and tokenizer_name in cache:
        logger.info(f"load {tokenizer_name} from cache")
        return cache[tokenizer_name]

    has_zh_tokens = []
    all_zh_tokens = []
    has_digit_tokens = []
    all_digit_tokens = []
    has_space_tokens = []
    all_space_tokens = []

    # zh_tags = ["all_zh", "has_zh"]
    # digit_tags = ["all_digit", "has_digit"]

    # zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}

    # symbol_count = 0

    all_single_zh_tokens = set()
    zh_symbol_count = 0
    buffer = []
    for token_id in range(tokenizer.vocab_size):
        decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
        token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
        # tokenizer.convert_tokens_to_string(tokens)

        tags = []

        if token is None:  # 有些词典有空的id(不连续)
            continue
        if isinstance(token, bytes):
            token = token.decode("utf-8", errors="ignore")

        digit_count = get_digit_count(decode_str)
        language_tags = detect_language(decode_str)

        if "Chinese" in language_tags:
            has_zh_tokens.append(decode_str)

        if is_all_zh(decode_str):
            tags.append("all_zh")
            all_zh_tokens.append(decode_str)


        if is_all_digit(decode_str):
            tags.append("all_digit")
            all_digit_tokens.append(decode_str)
        if has_digit(decode_str):
            tags.append("has_digit")
            has_digit_tokens.append(decode_str)


        space_count = get_space_count(decode_str)
        if space_count > 0:
            has_space_tokens.append(decode_str)
            if space_count == len(decode_str):
                all_space_tokens.append(decode_str)

        zh_count = get_zh_count(decode_str)

        buffer.append(json.dumps(
            {"id": token_id,
             "token": token,
             "token_decode": decode_str,
             "token_dumps": json.dumps(token),
             "token_unicode": to_unicode(token),
             "token_len": len(decode_str),
             "zh_count": zh_count,  # 包含汉字的数目
             # "zh-smpli": zh_hans_count,  # 简体中文  zh-Hans
             "tags": tags,
             "zh_symbol_count": zh_symbol_count,
             },
            ensure_ascii=False) + "\n")

    #     if zh_count >= 1:
    #         zh_token_count["total"] += 1
    #         if zh_count > 1:
    #             zh_token_count["中文多字"] += 1
    #         else:
    #             zh_token_count["中文单字"] += 1
    #             all_single_zh_tokens.add(decode_str.strip().replace("#", ""))
    #
    # zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens)

    dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_zh_char(k))

    # TODO: 繁体字,简体字

    result = {
        "name": tokenizer_name,
        "impl": str(tokenizer.__class__),
        "vocab_size": len(tokenizer),
        "中文token数": len(has_zh_tokens),
        "中文token的平均长度": None,
        "纯中文token的平均长度": None,
        "中文标点数": zh_symbol_count,
        "中文汉字编码长度均值": mean_length,
        "中文汉字编码长度分布": json.dumps(dist_length),
        "纯数字token数": len(all_digit_tokens),
        "包含数字token数": len(has_digit_tokens),
        "纯数字token的平均长度": round(_mean([len(item) for item in all_digit_tokens]), 2),
        "纯中文token数": None,  # all_zh
        "纯space的token数": len(all_space_tokens),
        "纯space的token数": len(all_space_tokens),  # "#"
        "纯space的token的平均长度": None,  # avg_len( tokens_contains_space)
        "contains_korea": None,
    }
    out_path = os.path.join(cache_dir, f"{tokenizer_name}.vocab.jsonl")
    logger.info(f"saving vocab to {out_path}")
    with open(out_path, "w", encoding="utf-8") as f_out:
        f_out.write(json.dumps(result, ensure_ascii=False) + "\n")
        for line in buffer:
            f_out.write(line)
    cache[tokenizer_name] = result
    return result






if __name__ == "__main__":
    # test_coding_length(jd_vocab_tokens, filter=lambda k: not is_chinese(k))
    # test_coding_length(zh_punc)
    # test_coding_length(zh_iterator())

    # from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b"
    # from vocab.chatglm_6b import tokenizer; name="chatglm_6b"
    # from vocab.baichuan2 import tokenizer;  name="baichuan2"
    name="gpt_4"
    # name="gpt2"
    # name="qwen1_5_14b_chat"
    # name="gpt_nexo_20b"
    # name="fastchat_t5_3b"


    print(iter_vocab(name))