Spaces:
Running
Running
File size: 7,220 Bytes
d27a756 c75633b 814ee6b 7d2062e 814ee6b 1b7fc74 814ee6b 367a536 1b7fc74 367a536 814ee6b 1b7fc74 814ee6b 988921c 814ee6b 1b7fc74 814ee6b 1b7fc74 814ee6b 1b7fc74 814ee6b 7d2062e 814ee6b 1b7fc74 814ee6b 1b7fc74 814ee6b 1b7fc74 988921c 1b7fc74 814ee6b 988921c 814ee6b 988921c 814ee6b 1b7fc74 814ee6b 1b7fc74 988921c 1b7fc74 814ee6b 1b7fc74 988921c 1b7fc74 814ee6b 1b7fc74 814ee6b 1b7fc74 988921c 1b7fc74 988921c 814ee6b 7d2062e 1b7fc74 367a536 1b7fc74 814ee6b d27a756 814ee6b 988921c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
"""
中文数据:clue superclue
英文数据:glue cnn_dailymail gigaword
代码数据:
数字:
"""
import json
import os
import sys
import pandas as pd
from datasets import load_dataset
from utils.log_util import logger
from vocab import load_tokener
from vocab import all_tokenizers
from typing import List, Optional, Union, Literal
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
common_units = ["g_bytes/b_tokens", "b_tokens/g_bytes", "t_bytes/t_tokens", "t_tokens/t_bytes", "n_chars/n_tokens", ]
common_corpuses = ["cc100-en", "cc100-zh-Hans", "cc100-es", "cc100-fr", "cc100-de", "cc100-ko" "cc100-fa", "cc100-ar"]
VALID_CODES_CC100 = [
"am", "ar", "as", "az", "be", "bg", "bn", "bn_rom", "br", "bs", "ca", "cs", "cy", "da", "de",
"el", "en", "eo", "es", "et", "eu", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gn", "gu",
"ha", "he", "hi", "hi_rom", "hr", "ht", "hu", "hy", "id", "ig", "is", "it", "ja", "jv", "ka",
"kk", "km", "kn", "ko", "ku", "ky", "la", "lg", "li", "ln", "lo", "lt", "lv", "mg", "mk", "ml",
"mn", "mr", "ms", "my", "my_zaw", "ne", "nl", "no", "ns", "om", "or", "pa", "pl", "ps", "pt",
"qu", "rm", "ro", "ru", "sa", "si", "sc", "sd", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv",
"sw", "ta", "ta_rom", "te", "te_rom", "th", "tl", "tn", "tr", "ug", "uk", "ur", "ur_rom", "uz",
"vi", "wo", "xh", "yi", "yo", "zh-Hans", "zh-Hant", "zu",
]
# code: https://huggingface.co/datasets/codeparrot/github-code-clean python java c sql html
# math:
def get_n_bytes_of_string(string_text):
n_bytes = len(string_text.encode("utf-8"))
return n_bytes
def unit_convertor(stat, unit):
n_tokens = stat["n_tokens"]
n_chars = stat["n_chars"]
n_bytes = stat["n_bytes"]
n_tokens_in_billion = n_tokens / (1000 * 1000 * 1000)
n_tokens_in_trillion = n_tokens / (1000 * 1000 * 1000 * 1000)
n_bytes_in_mb = n_bytes / (1024 * 1024)
n_bytes_in_gb = n_bytes_in_mb / 1024
n_bytes_in_tb = n_bytes_in_gb / 1024
# n_chars_in_billion = n_chars / (1000 * 1000 * 1000)
if unit == "n_tokens/n_bytes":
value = n_tokens / n_bytes
# the average number of characters per token
elif unit in ["n_chars/n_tokens", "chars_per_token"]: # 重要:平均一个token包含多少个字符。
value = n_chars / n_tokens
elif unit == "n_tokens/n_chars": # 一个中文汉字需要几个token?
value = n_tokens / n_chars
elif unit == "g_bytes/b_tokens":
value = n_bytes_in_gb / n_tokens_in_billion
elif unit == "b_tokens/g_bytes":
value = n_tokens_in_billion / n_bytes_in_gb
elif unit == "t_bytes/t_tokens": # 重要:
value = n_bytes_in_tb / n_tokens_in_trillion
elif unit == "t_tokens/t_bytes":
value = n_tokens_in_trillion / n_bytes_in_tb
else:
raise "measure not support"
return round(value, 3)
def to_dataframe(stats, units=None):
if units is None:
units = common_units
elif not isinstance(units, list):
units = [units]
table = []
for tokenizer_name, stat in stats.items():
columns = {"tokenizer": tokenizer_name, "vocab_size": stat["vocab_size"]}
for unit in units:
if unit not in stat:
columns[unit] = unit_convertor(stat, unit)
else:
logger.error(f"unit {unit} not support")
table.append(columns)
df = pd.DataFrame(table)
return df
cache = {}
def tokenize_corpus(
tokenizer_name: str,
corpuses: List[str],
cache_path: str = "stats/compress_rate.json"
) -> dict:
"""
这个要独立的cache,因为速度慢。
:param tokenizer_name:
:param corpuses:
:param cache_path:
:return:
"""
def _tokenize(tokenizer, datasets):
n_tokens = 0
n_chars = 0
n_bytes = 0
for dataset in datasets:
for item in dataset:
text = item["text"]
n_bytes += get_n_bytes_of_string(text)
n_chars += len(text)
encodings = tokenizer.encode(text)
n_tokens += len(encodings)
stat = {
# "vocab_size": len(tokenizer.vocab_size,
"vocab_size": len(tokenizer),
"n_bytes": n_bytes,
"n_tokens": n_tokens,
"n_chars": n_chars,
}
return stat
# load from cache
cache_id = f"{tokenizer_name}.{'.'.join(corpuses)}"
if not cache and os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f_tmp:
cache.update(json.load(f_tmp))
if cache_id in cache:
logger.info(f"loading {cache_id} from in-memory cache")
return cache[cache_id]
# tokenize corpus
tokenizer = load_tokener(tokenizer_name)
datasets = [load_dataset("eson/cc100-samples", corpus.replace("cc100-", ""), split="train") for corpus in corpuses]
stat = _tokenize(tokenizer, datasets)
# save to cache
len_before = len(cache)
cache[cache_id] = stat
len_after = len(cache)
logger.info(f"saving {cache_id} to in-memory and file cache: {len_before}->{len_after}")
with open(cache_path, "w", encoding="utf-8") as f_tmp:
json.dump(cache, f_tmp, indent=2)
return stat
def get_compression_leaderboard(
corpuses: List[str] = ['cc100-en'],
unit: str = "b_tokens/g_bytes",
tokenizer_filter: Optional[str] = None,
return_type: Optional[Literal["dict", "dataframe"]] = "dataframe"
) -> Union[pd.DataFrame, dict]:
"""
## TODO
- search by organization,
"""
logger.info(f"corpuses: {corpuses}; unit: {unit}; tokenizer_filter: {tokenizer_filter}")
stats = {}
if tokenizer_filter is not None:
tokenizers = [tokenizer_name for tokenizer_name in all_tokenizers if tokenizer_filter in tokenizer_name]
else:
tokenizers = all_tokenizers
for lang in corpuses:
for tokenizer_name in tokenizers:
stat = tokenize_corpus(tokenizer_name, [lang])
stats[tokenizer_name] = stat
if return_type == "dataframe":
token_number_unit, file_size_unit = unit.split("/")
reverse_unit = f"{file_size_unit}/{token_number_unit}"
stats = to_dataframe(stats, [unit, reverse_unit, "n_chars/n_tokens"])
stats = stats.sort_values(unit)
stats = stats.rename(columns={unit: f' ⬆️{unit}'})
return stats
def update_compress_rate():
pass
def test():
tokenizer_name = "gpt_4"
tokenizer = load_tokener(tokenizer_name)
stats = {tokenizer_name: tokenize_corpus(tokenizer, ["cc100-en", "cc100-zh-Hans"])}
df = to_dataframe(stats)
# print(df.to_markdown(index=False, tablefmt='fancy_grid'))
logger.info(f"\n{df.to_markdown(index=False)}")
def main():
if len(sys.argv) == 3:
tokenizers = [sys.argv[1]]
corpuses = [sys.argv[2]]
else:
tokenizers = all_tokenizers[:2]
corpuses = common_corpuses
df = get_compression_leaderboard(corpuses)
# print(df.to_markdown(index=False, tablefmt='fancy_grid'))
logger.info(f"\n{df.to_markdown(index=False)}")
if __name__ == "__main__":
main()
# test()
|