Spaces:
Running
Running
File size: 5,173 Bytes
751936e 2bd606a 751936e 2bd606a 751936e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
import json
from vocab import all_tokenizer_config, load_tokenizer, TokenizerImpl
text = "hello; Замглавы управления развития; 특히 주소 15~17번 홀에선 3연속;" \
" 確実に春が近づいてること; a közoktatással? _ Belföld;" \
" pumë, i vjetër, vjeç; ئەردوغان ۋە قىرغىزىستان ;" \
" निम्न में से कौन सा हारडवेयर; ተለዋዋጭ የግድግዳ ; Дзейныя асобы:;" \
" « અમરેલીનાં મહિલા વિકાસ; 🦙❤❥웃유♋☮✊;" \
"װיקיװערטערבוך "
whitespace = "\t \n\n\r "
bytes = b"\x00\x01\x02\x03\x04".decode('utf-8')
text += whitespace
def get_unk(tokenizer_config):
tokenizer = load_tokenizer(tokenizer_config)
if hasattr(tokenizer, "unk_token"):
return f"{tokenizer.unk_token}, {tokenizer.unk_token_id}"
else:
return "unk_token not found"
# def infer_tokenizer_impl(tokenizer_config):
def infer_tokenizer_type(tokenizer_config):
tokenizer = load_tokenizer(tokenizer_config)
if tokenizer_config.impl == TokenizerImpl.TikToken:
return "tiktoken"
if hasattr(tokenizer, "backend_tokenizer"):
return str(type(tokenizer.backend_tokenizer.model)) # type(tokenizer._tokenizer.model))
# orion: sp_model.Load(vocab_file),继承 PreTrainedTokenizer
elif hasattr(tokenizer, "sp_model"): # 基于 sentencepiece 包
# for i in range(tokenizer.sp_model.piece_size()):
# if tokenizer.sp_model.is_byte(i):
# print("")
return f"sp_model, byte_num: {sum([tokenizer.sp_model.is_byte(i) for i in range(tokenizer.sp_model.piece_size())])}"
# sp.Load(model_path) ,并且包括image_tokenizer
elif "glm-" in tokenizer_config.name_or_path:
return f"byte_num: {sum([tokenizer.sp_tokenizer.text_tokenizer.sp.is_byte(i) for i in range(tokenizer.sp_tokenizer.text_tokenizer.sp.piece_size())])}"
# sp.Load(model_path) ,没有image_tokenizer
elif "glm2-" in tokenizer_config.name_or_path \
or "glm3-" in tokenizer_config.name_or_path \
or "CharacterGLM-6B" in tokenizer_config.name_or_path:
return f"byte_num: {sum([tokenizer.tokenizer.sp_model.is_byte(i) for i in range(tokenizer.tokenizer.sp_model.piece_size())])}"
elif "abeja/gpt-neox-japanese-2.7b" == tokenizer_config.name_or_path: # 支持 byte-level,解决oov问题
return f"japanese-bpe: https://github.com/tanreinama/Japanese-BPEEncoder_V2"
# bert-base-japanese: 特殊的地方在于 "word_tokenizer_type": "mecab",见 https://huggingface.co/tohoku-nlp/bert-base-japanese/blob/main/tokenizer_config.json
elif "bert-base-japanese" in tokenizer_config.name_or_path:
return "wordpiece.MecabTokenizer, 支持byte-level https://taku910.github.io/mecab/"
elif "moss" in tokenizer_config.name_or_path:
return "应该是 sentencepiece.byte_bpe,待确认"
elif "byt5" in tokenizer_config.name_or_path:
return "未知,待定"
else:
print("catch", tokenizer_config.name_or_path)
raise "error"
def test_reversible(tokenizer_config):
"""
xlm-roberta-base 为什么oov这么少?是因为有 byte吗?
:param tokenizer_config:
:return:
"""
tokenizer = load_tokenizer(tokenizer_config)
encoding = tokenizer.encode(text, add_special_tokens=False)
decoding = tokenizer.decode(encoding)
if text in decoding:
# print(tokenizer_config.name, tokenizer_config.impl, "reversible: true")
pass
else:
unk_count = sum([1 for token_id in encoding if token_id == tokenizer.unk_token_id])
oov_tokens = []
# if tokenizer_config.impl == TokenizerImpl.SentencePiece:
# print(sum([tokenizer.is_byte(i) for i in range(tokenizer.piece_size())]))
print("#######"*5)
print(f"{tokenizer_config.name_or_path}, {infer_tokenizer_type(tokenizer_config)}\n"
f"reversible: false; unk_token: {get_unk(tokenizer_config)},"
f" unk_ratio: {unk_count/len(encoding):.4f}; oov: []")
for i in range(len(text)):
if text[i] != decoding[i]:
# print(f"text[{i}] = {str(bytes(text[i:], 'utf-8'))}\n"
# f"decoding[{i}] = {str(bytes(decoding[i:], 'utf-8'))}")
print(f"text[{i}] = {json.dumps(text[i:], ensure_ascii=False)}, \n"
f"decoding[{i}] = {json.dumps(decoding[i:], ensure_ascii=False)}")
break
for config in all_tokenizer_config:
# if "xlm-roberta-base" in config.name:
# if "xlm-roberta-base" in config.name:
# if "chatglm3-6b" in config.name:
# if "bert-base-japanese" in config.name:
# if "moss" in config.name:
# if "byt5" in config.name:
if "baichuan" in config.name_or_path:
# if "CharacterGLM-6B" in config.name:
# if "fastchat-t5" in config.name: # 报错 pyo3_runtime.PanicException: AddedVocabulary bad split
# if True:
# test_unk(config)
test_reversible(config)
|