Spaces:
Running
Running
import gradio as gr | |
import json | |
import pandas as pd | |
from vocab import load_tokener | |
from utils.zh_util import iter_vocab | |
from utils.log_util import logger | |
def tokenize(text, tokenizer_type, color_num=5, update=True): | |
""" | |
TODO: cache tokenizer | |
""" | |
logger.info("[param]:" + json.dumps({"text": text, "tokenizer_type": tokenizer_type}, ensure_ascii=False)) | |
pos_tokens = [] | |
tokenizer = load_tokener(tokenizer_type) | |
encoding = tokenizer.encode(text) | |
table = [] | |
for idx, token_id in enumerate(encoding): | |
decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd" | |
pos_tokens.extend([(decode_text, str(idx % color_num))]) | |
# token "Byte": # 这是 utf-8编码吧? | |
token = tokenizer.convert_ids_to_tokens([token_id])[0] | |
if isinstance(token, bytes): | |
try: | |
token_str = token.decode("utf-8") | |
except: | |
token_str = token.decode("utf-8", errors="ignore") | |
logger.info("[decode_error]: " + json.dumps( | |
{"tokenizer_type": tokenizer_type, "token": str(token), "token_str": token_str}, | |
ensure_ascii=False)) | |
token_bytes = token | |
json_dumps = json.dumps(token_str) | |
elif isinstance(token, str): | |
token_str = token | |
token_bytes = bytes(token_str, "utf-8") | |
json_dumps = json.dumps(token_str) | |
else: | |
return | |
# ⭐ | |
table.append( | |
{"TokenID": token_id, | |
"Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama | |
"Text": decode_text, # | |
# "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes) | |
"Bytes": str(token_bytes), | |
# "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode | |
} | |
) | |
table_df = pd.DataFrame(table) | |
logger.info(f"[Tokens {tokenizer_type}]: {table[:2]}") | |
# print(table_df) | |
if update: | |
return gr.update(value=pos_tokens, label=f"Tokens: {len(encoding)}"), table_df | |
else: | |
return pos_tokens, table_df, len(encoding) | |
def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2): | |
pos_tokens_1, table_df_1 = tokenize(text, tokenizer_type_1) | |
pos_tokens_2, table_df_2 = tokenize(text, tokenizer_type_2) | |
return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2 | |
def basic_count(tokenizer_type): | |
tokenizer = load_tokener(tokenizer_type) | |
stats = iter_vocab(tokenizer, tokenizer_type) | |
return tokenizer.vocab_size, f'{stats["中文汉字数"]["中文单字"]}/{stats["中文汉字数"]["中文多字"]}' | |
def get_overlap_token_size(tokenizer_type_1, tokenizer_type_2): | |
tokenizer1 = load_tokener(tokenizer_type_1) | |
tokenizer2 = load_tokener(tokenizer_type_2) | |
vocab1 = tokenizer1.get_vocab() | |
vocab2 = tokenizer2.get_vocab() | |
overlap_tokens = vocab1.keys() & vocab2.keys() | |
overlap_token_size = len(overlap_tokens) | |
logger.info(f"[OverlapTokens of {tokenizer_type_1} {tokenizer_type_2}]: {list(overlap_tokens)[:10]}") | |
return overlap_token_size, overlap_token_size | |
def test_coding(): | |
bytes1 = b'\xe4\xb8\xad' | |
print(bytes1) # b'\xe4\xb8\xad' | |
if __name__ == "__main__": | |
print(basic_count("internlm_chat_7b")) | |