tokenizer-arena / utils /compress_rate_util.py
xu-song's picture
add compress rate
814ee6b
raw
history blame
6.4 kB
"""
中文数据:clue superclue
英文数据:glue cnn_dailymail gigaword
代码数据:
数字:
## 参考
- https://github.com/baichuan-inc/Baichuan-7B 记录了不同分词器的压缩率
- 指标:猜测是 n_tokens/n_chars (baichuan小,说明百川token少,压缩率高)
- Baichuan 0.73; llama 1.31;
- https://github.com/QwenLM/Qwen/blob/main/tech_memo.md 记录了不同分词器的压缩率
- 以 XLM-RoBERTa为基准 (Unsupervised Cross-lingual Representation Learning at Scale ) ,
- Qwen-7B 在很多语言上压缩率都较高压缩率 (high compression rate)
- 中文: llama7b 2.2; baichuan7b 1.1; chatglm2-6b 0.9; qwen7b 0.95
- 英文:
- 指标:猜测是 n_tokens / n_tokens_xlmR
- https://github.com/hpcaitech/ColossalAI/blob/4b8312c08e8d05a5f41453d63c8671aab601ed1c/applications/Colossal-LLaMA-2/prepare_pretrain_dataset.py#L134
- 有压缩率的计算方式
- https://github.com/hpcaitech/ColossalAI/blob/main/applications/Colossal-LLaMA-2/README.md#tokenizer
- 记录了不同分词器的压缩率
- 指标:
- https://github.com/AUGMXNT/shisa/blob/6a823d77a71acbd18ab8f68a6b02f4b87ec9dddd/eval/tokenizer-efficiency-ja.py#L24
- 有压缩率的计算方式 = {n_chars} / {n_tokens}
-
- https://github.com/huggingface/transformers/blob/cec773345aeffce3c04e8891303a3f748de7141e/src/transformers/models/whisper/generation_whisper.py#L354
- 这个可能不是
- https://github.com/bojone/bytepiece/blob/main/README_en.md
- "bytes/token": the average number of bytes per token
- Getting the most out of your tokenizer for pre-training and domain adaptation 👍
- 定义:
- NSL: 两个分词器的编码长度 比例,通常以 llama为基准
- average number of bytes per token. {n_bytes} / {n_tokens}
- higher compression rate --
- *** https://github.com/microsoft/LLMLingua/blob/main/llmlingua/prompt_compressor.py
- 定义:{Compressed Size}/{Raw Size}, 来自论文 Language modeling is compression. 数值<=1.0,用 % 来表示。也有>1的情况。
-
- {Compressed Size} 指的是?
- 这里的压缩指的是 模型参数相关的。
"""
import json
import os
import pandas as pd
from datasets import load_dataset
from utils.log_util import logger
from vocab import load_tokener
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
def get_n_bytes_of_string(string_text):
n_bytes = len(string_text.encode("utf-8"))
return n_bytes
def unit_convertor(stat, unit):
n_tokens = stat["n_tokens"]
n_chars = stat["n_chars"]
n_bytes = stat["n_bytes"]
n_tokens_in_billion = n_tokens / (1000 * 1000 * 1000)
n_tokens_in_trillion = n_tokens / (1000 * 1000 * 1000 * 1000)
n_bytes_in_mb = n_bytes / (1024 * 1024)
n_bytes_in_gb = n_bytes_in_mb / 1024
n_bytes_in_tb = n_bytes_in_gb / 1024
# n_chars_in_billion = n_chars / (1000 * 1000 * 1000)
if unit == "n_tokens/n_bytes":
value = n_tokens / n_bytes
elif unit == "n_chars/n_tokens": # 重要:平均一个token包含多少个字符。
value = n_chars / n_tokens
elif unit == "n_tokens/n_chars": # 一个中文汉字需要几个token?
value = n_tokens / n_chars
elif unit == "g_bytes/b_tokens":
value = n_bytes_in_gb / n_tokens_in_billion
elif unit == "t_bytes/t_tokens": # 重要:
value = n_bytes_in_tb / n_tokens_in_trillion
elif unit == "b_tokens/g_bytes":
value = n_tokens_in_billion / n_bytes_in_gb
else:
raise "measure not support"
return round(value, 2)
all_units = ["g_bytes/b_tokens", "t_bytes/t_tokens", "b_tokens/g_bytes"]
def pprint(stats):
table = []
for tokenizer_name, stat in stats.items():
columns = {"tokenizer": tokenizer_name, "vocab_size": stat["vocab_size"]}
for unit in all_units:
if unit not in stat:
columns[unit] = unit_convertor(stat, unit)
else:
pass
table.append(columns)
df = pd.DataFrame(table)
# print(df.to_markdown(index=False, tablefmt='fancy_grid'))
logger.info(df.to_markdown(index=False))
return
cache = {}
def tokenize_corpus(tokenizer, lang, cache_dir="stats/compress_rate"):
"""
这个要独立的cache,因为速度慢。
:param tokenizer:
:param lang:
:param cache_dir:
:return:
"""
def _tokenize(tokenizer, dataset):
n_tokens = 0
n_chars = 0
n_bytes = 0
for item in dataset:
text = item["text"]
n_bytes += get_n_bytes_of_string(text)
n_chars += len(text)
encodings = tokenizer.encode(text)
n_tokens += len(encodings)
stat = {
"vocab_size": tokenizer.vocab_size,
"n_bytes": n_bytes,
"n_tokens": n_tokens,
"n_chars": n_chars,
}
return stat
tokenizer_name = tokenizer.alias
lang = lang.replace("cc100-", "")
cache_id = f"{tokenizer_name}.{lang}"
# L1: in-memory cache
if cache_id in cache:
logger.info(f"loading {cache_id} from in-memory cache")
return cache[cache_id]
# L2: file cache
cache_dir = os.path.join(CURRENT_DIR, f"../{cache_dir}")
os.makedirs(cache_dir, exist_ok=True)
cache_path = os.path.join(cache_dir, f"{cache_id}.json")
if os.path.exists(cache_path):
logger.info(f"loading {cache_id} from file cache")
stat = json.load(open(cache_path, "r", encoding="utf-8"))
cache[cache_id] = stat
return stat
# tokenize corpus
dataset = load_dataset("eson/cc100-samples", lang, split="train")
stat = _tokenize(tokenizer, dataset)
logger.info(f"saving {cache_id} to {cache_path}")
json.dump(stat, open(cache_path, "w", encoding="utf-8"))
logger.info(f"saving {cache_id} to in-memory cache")
cache[cache_id] = stat
return stat
def main():
from vocab import all_tokenizers
stats = {}
for lang in ["en", "zh-Hans"]:
print("###" * 10 + lang)
for tokenizer_name in ['llama', 'llama2', 'llama3']:
# for tokenizer_name in all_tokenizers:
tokenizer = load_tokener(tokenizer_name)
stat = tokenize_corpus(tokenizer, lang)
# ["qwen1_5_14b_chat", "gpt_35_turbo",]:
stats[tokenizer_name] = stat
pprint(stats)
if __name__ == "__main__":
main()