from patcher import tiktoken_patch import tiktoken from transformers import AutoTokenizer, PreTrainedTokenizer from enum import Enum, auto from dataclasses import dataclass, field from utils.log_util import logger from typing import Dict, Any, Union """Interface: # https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py tokenizer.encode -> List[int]: Converts a string to a sequence of ids (integer) tokenizer.decode tokenizer.convert_tokens_to_string # gpt4 没有这个方法 tokenizer.convert_ids_to_tokens tokenizer.tokenize -> List[str]: Converts a string into a sequence of tokens -> tokenizer.parent = "" tokenizer.vocab_size tokenizer.get_vocab() # gpt-neox-20b, llama tokenizer.type = TokenizerType.ByteBPE.name tokenizer.implementation = TokenizerImpl.SentencePiece.name # https://github.com/facebookresearch/llama/blob/main/llama/tokenizer.py "HFGPT2Tokenizer", "HFTokenizer", "GPT2BPETokenizer", "CharLevelTokenizer", "TiktokenTokenizer", "SPMTokenizer", https://github.com/EleutherAI/gpt-neox/blob/main/tools/preprocess_data.py tokenizer.comments = "split all numbers into individual digits, " \ "and fallback to bytes to decompose unknown UTF-8 characters" tokenizer.all_special_tokens # baichuan tokenizer.special_tokens_set # gpt3.5_turbo tokenizer.special_tokens_map """ class TokenizerImpl(Enum): """ - https://github.com/huggingface/tokenizers/blob/main/bindings/python/py_src/tokenizers/implementations/__init__.py - https://huggingface.co/docs/transformers/tokenizer_summary - https://github.com/EleutherAI/gpt-neox/blob/main/megatron/tokenizer/tokenizer.py ## google/BertTokenizer - https://github.com/huggingface/tokenizers/blob/main/bindings/python/py_src/tokenizers/implementations/bert_wordpiece.py - 特征 - 算法:BERT的编码器是 BPE-WordPiece,将单词拆分成多个前缀符号(比如BERT中的##)最小单元 - 词典:有##开头的token,表示subword, - 中文采用char粒度分词 - 英文采用 WordPiece ## google/sentencepiece - https://github.com/google/sentencepiece/blob/3863f7648e5d8edb571ac592f3ac4f5f0695275a/src/sentencepiece_model.proto#L48 - 支持 sentencepiece 和 wordpiece - sentencepiece 有byte-bpe吗? - UNIGRAM = 1; // Unigram language model with dynamic algorithm - BPE = 2; // Byte Pair Encoding - WORD = 3; // Delimitered by whitespace. - CHAR = 4; // tokenizes into character sequence - wordpiece - 特征: - 训练: spm_train --model_type unigram/bpe/char/word - 特殊符号: Ġ - 文件: *.sp_model 或 *.model (可选文件 .vocab,) spm简称 (其他格式比如 tokenizer.json是给hf_tokenizer兼容用的) - 实现: - 依赖: protobuf - 训练: `import sentencepiece as spm; spm.SentencePieceTrainer.train` 或 `spm_train` - 加载: `import sentencepiece as spm; spm.SentencePieceProcessor().Load(vocab_file)` - 方法: 是SentencePieceProcessor类型,sp_model.id_to_piece,有tokenizer.json tokenizer.model, - 分词: - pre_tokenizers.ByteLevel(add_prefix_space=True, use_regex=False) - 词典: 词典字符有 ▁ (U+2581) ,表示空格或句首。 - 示例:google-t5, llama,baichuan, orion, - llama: tokenizer.json(包含model.vocab model.merges) tokenizer.model - grok: 原始是 .model文件,后面转成了 tokenizer.json - google-t5: tokenizer.json, spiece.model - Skywork-13B-Math: tokenizer.model - xlm_roberta: sentencepiece.bpe.model - GPT2Tokenizer - tokenizer.json, vocab.json, merges.txt (https://huggingface.co/openai-community/gpt2) - vocab.bpe, encoder.json, dict.txt (fairseq版本,不常用,可以忽略这个版本) ## thu/icetk - icetk: sentencepiece的分支,支持image_tokenizer。 - glm, chatglm1, chatglm2 ## huggingface/tokenizers - https://github.com/huggingface/tokenizers - VS sentencepiece - 支持sentencepiece - .model转化为 (merges.txt + vocab.json) 或者 tokenizer.json - https://github.com/huggingface/tokenizers/blob/main/bindings/python/scripts/sentencepiece_extractor.py - 加载 merges.txt, vocab.json - SentencePieceBPETokenizer https://github.com/huggingface/tokenizers/blob/v0.19.1/bindings/python/py_src/tokenizers/implementations/sentencepiece_bpe.py#L10 - 在 sentencepiece基础上,hf_tokenizer支持pre-tokenization的正则表达式,对tab和换行支持更好,支持special token - 类型: 支持 BBPE, WordPiece or Unigram - 特征: - 文件: tokenizer.json(包含后两个文件的内容), merges.txt, vocab.json - added_tokens 在vocab中不一定存在。 - 实现: - 训练: `from tokenizers.trainers import BpeTrainer, UnigramTrainer, WordLevelTrainer, WordPieceTrainer` - 加载: - 方法: .model.from_file .model.save .model.token_to_id .model.tokenize - .model 是 tokenizer.models.BPE 类型 - 词典有 Ġ "\u0120" 开头 - 优势 - - 示例:gpt2, gpt_neox_20b, moss, bloom, qwen2 - 优势:相对sentence piece, - ss ## openai/tiktoken - 特征:空格就是空格, - 示例:gpt3.5 gpt4, qwen, """ """ 算法体系 https://www.huaxiaozhuan.com/%E5%B7%A5%E5%85%B7/huggingface_transformer/chapters/1_tokenizer.html - word-base tokenizer: - char-base tokenizer: - subword-based Tokenizer - BPE - byte-bpe: base vocabulary大小是256 - WordPiece: - 相比BPE,WordPiece 仅保存最终词表,而不保存学到的 merge rule - Unigram - SentencePiece """ # 分类体系:https://github.com/huggingface/tokenizers/blob/main/bindings/python/py_src/tokenizers/implementations/ BertTokenizer = "wordpiece.BertTokenizer" JapaneseTokenizer = ("wordpiece.MecabTokenizer", "https://github.com/polm/fugashi") # 常用日语包 ipadic,fugashi, ByteLevelBPETokenizer = "byte_level_bpe" # BBPE SentencePieceBPETokenizer = "sentencepiece_bpe" # 分类体系 # SentencePeice(BPE) SentencePiece = auto() # sentencepiece.bpe, sentencepiece.unigram, sentencepiece.char, sentencepiece.word, byte_level_bpe = auto() # HFTokenizer = auto() # , 支持 TikToken = auto() # subword-nmt # WordPiece # load_vocab_with_SPECIAL_TOKEN = True # 如果不包含会导致计算词典大小错误、overlap_token计算不一致。 @dataclass class TokenizerConfig: """ https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/leaderboard/read_evals.py """ name_or_path: str # org/model (path on hub), as unique id name_display: str = None # impl: TokenizerImpl = None # implementation, tokenizer_class/type org: str = None link: str = None # http://** desc: str = None # description meta: str = None level: str = None # char-level, word-level, byte-level lang: str = None init_kwargs: Dict[str, Any] = field(default_factory=dict, ) def __post_init__(self): if self.link is None: self.link = "https://huggingface.co/" + self.name_or_path # TODO + revision if self.name_display is None: self.name_display = self.name_or_path @classmethod def init_from_json_file(cls, json_filepath: str) -> 'TokenizerConfig': pass def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ else: return False def __hash__(self): return hash(self.name_or_path) # TODO: append link and description to the end of dropdown button. # Add tokenizer_class/type, comments _all_tokenizer_config = [ # bert style tokenizers TokenizerConfig("google-bert/bert-base-cased", impl=TokenizerImpl.BertTokenizer, org="Google", desc="first add whitespace around any CJK character, then perform wordpiece tokenization."), TokenizerConfig("google-bert/bert-base-uncased", impl=TokenizerImpl.BertTokenizer, org="Google", desc="first add whitespace around any CJK character, then perform wordpiece tokenization."), TokenizerConfig("google-bert/bert-base-chinese", impl=TokenizerImpl.BertTokenizer, org="Google", desc="first add whitespace around any CJK character, then perform wordpiece tokenization."), TokenizerConfig("google-bert/bert-base-german-cased", impl=TokenizerImpl.BertTokenizer, org="Google"), TokenizerConfig("dbmdz/bert-base-german-uncased", impl=TokenizerImpl.BertTokenizer, org="dbmdz"), TokenizerConfig("asafaya/bert-base-arabic", impl=TokenizerImpl.BertTokenizer, org="-"), TokenizerConfig("google-bert/bert-base-multilingual-uncased", impl=TokenizerImpl.BertTokenizer, org="Google"), TokenizerConfig("google-bert/bert-base-multilingual-cased", impl=TokenizerImpl.BertTokenizer, org="Google"), TokenizerConfig("tohoku-nlp/bert-base-japanese", impl=TokenizerImpl.BertTokenizer, org="Tohoku", desc="The texts are first tokenized by MeCab morphological parser with the IPA dictionary, " "then split into subwords by the WordPiece algorithm."), TokenizerConfig("clue/roberta_chinese_clue_tiny", name_display="clue/roberta-chinese-clue", impl=TokenizerImpl.BertTokenizer, org="CLUE", init_kwargs={"revision": "refs/pr/1"}, desc="", meta="去掉了繁体字, https://github.com/CLUEbenchmark/CLUEPretrainedModels/blob/master/README.md"), TokenizerConfig("eson/kplug-base-encoder", name_display="eson/kplug", impl=TokenizerImpl.BertTokenizer, org="JD"), TokenizerConfig("ckiplab/gpt2-base-chinese", impl=TokenizerImpl.BertTokenizer, org="SINICA"), # 台湾中央研究院 # WoBERT https://kexue.fm/archives/7758 # WoBERT Plus https://github.com/ZhuiyiTechnology/WoBERT # gpt2 style tokenizers TokenizerConfig("openai-community/gpt2", impl=TokenizerImpl.SentencePiece, org="OpenAI"), # byte-level BPE,没有byte,是unicode-level的吗? TokenizerConfig("ClassCat/gpt2-base-french", impl=TokenizerImpl.SentencePiece, org="ClassCat"), TokenizerConfig("ClassCat/gpt2-base-spanish", impl=TokenizerImpl.SentencePiece, org="ClassCat"), TokenizerConfig("fnlp/moss-moon-003-sft", impl=TokenizerImpl.SentencePiece, init_kwargs={"revision": "refs/pr/6"}, org="Fudan", desc="This tokenizer has been trained to treat spaces like parts of the tokens " "(a bit like sentencepiece) so a word will be encoded differently whether " "it is at the beginning of the sentence (without space) or not", meta="在gpt2词典基础上,扩充了5万中文"), TokenizerConfig("bigscience/bloom", impl=TokenizerImpl.SentencePiece, org="BigScience", meta="比gpt_neox的词典 对中文支持更好。"), # ("bloomz_6b4_zh", # ("BelleGroup/BELLE-7B-2M", # 模型和词典都基于bloom # TokenizerConfig("EleutherAI/gpt-neox-20b", impl=TokenizerImpl.SentencePiece, org="EleutherAI"), # 5万 TokenizerConfig("cyberagent/open-calm-7b", impl=TokenizerImpl.SentencePiece, org="CyberAgent"), # GPTNeoXTokenizer TokenizerConfig("abeja/gpt-neox-japanese-2.7b", impl=TokenizerImpl.SentencePiece, org="ABEJA"), TokenizerConfig("rinna/bilingual-gpt-neox-4b", impl=TokenizerImpl.SentencePiece, org="ABEJA", lang="en/ja"), TokenizerConfig("Qwen/Qwen1.5-14B", impl=TokenizerImpl.SentencePiece, org="Alibaba"), # 15万,速度有点慢 TokenizerConfig("Qwen/Qwen1.5-110B", impl=TokenizerImpl.SentencePiece, org="Alibaba"), TokenizerConfig("Qwen/Qwen1.5-1.8B", impl=TokenizerImpl.SentencePiece, org="Alibaba"), TokenizerConfig("Qwen/Qwen2-72B", impl=TokenizerImpl.SentencePiece, org="Alibaba"), TokenizerConfig("HuggingFaceH4/starchat-alpha", impl=TokenizerImpl.SentencePiece, org="-"), ####### google/sentencepiece tokenizer: # T5 llama internlm TokenizerConfig("google-t5/t5-large", name_display="google-t5/t5", impl=TokenizerImpl.SentencePiece, org="Google"), # t5_small, t5_base, t5_large, flan_t5_base, # ("t5_base", "", "sentencepiece"), # TokenizerConfig("google/flan-t5-base", impl=TokenizerImpl.SentencePiece, ), TokenizerConfig("lmsys/fastchat-t5-3b-v1.0", impl=TokenizerImpl.SentencePiece, org="LMSYS", init_kwargs={"use_fast": False} # 解决 pyo3_runtime.PanicException: AddedVocabulary bad split ), TokenizerConfig("CohereForAI/aya-101", org="Cohere For AI"), # "tokenizer_class": "T5Tokenizer", TokenizerConfig("ClueAI/ChatYuan-large-v2", impl=TokenizerImpl.SentencePiece, org="CLUE"), TokenizerConfig("ClueAI/PromptCLUE-base", impl=TokenizerImpl.SentencePiece, org="CLUE"), # byte-level BPE # '中文单字': 700, '中文多字': 0 meta-llama/Meta-Llama-3.1-405B TokenizerConfig("meta-llama/Meta-Llama-3.1-405B", name_display="Meta/llama3.1", impl=TokenizerImpl.SentencePiece, org="Meta"), TokenizerConfig("gradientai/Llama-3-8B-Instruct-Gradient-1048k", name_display="Meta/llama3", impl=TokenizerImpl.SentencePiece, org="Meta", desc="llama split all numbers into individual digits, and fallback to bytes to decompose unknown UTF-8 characters"), TokenizerConfig("NousResearch/Llama-2-7b-chat-hf", name_display="Meta/llama2", impl=TokenizerImpl.SentencePiece, org="Meta"), TokenizerConfig("huggyllama/llama-7b", name_display="Meta/llama", impl=TokenizerImpl.SentencePiece, org="Meta"), TokenizerConfig("hpcai-tech/grok-1", name_display="xai-org/grok-1", impl=TokenizerImpl.SentencePiece, org="xAI"), # 由.model文件转化为了 TokenizerConfig("hfl/chinese-llama-lora-7b", impl=TokenizerImpl.SentencePiece, org="-", meta="向原始LLaMA的词汇表中添加2w个中文词汇,针对原版LLaMA模型扩充了中文词表, 提升了中文编解码效率"), # TokenizerConfig("hfl/chinese-llama-2-7b", impl=TokenizerImpl.SentencePiece, org="-", meta="重新设计了新词表(大小:55296),进一步提升了中文字词的覆盖程度"), # TokenizerConfig("hfl/llama-3-chinese-8b", impl=TokenizerImpl.SentencePiece, org="-"), TokenizerConfig("hfl/chinese-alpaca-lora-7b", impl=TokenizerImpl.SentencePiece, org="-"), # 中文Alpaca模型在上述中文LLaMA模型的基础上进一步使用了指令数据进行精调。 "比chinese_llama词典多一个`[PAD]`,请勿混用" # # ("belle_llama_ext_7b", # ("alpaca_7b", TokenizerConfig("baichuan-inc/Baichuan-7B", name_display="baichuan-inc/baichuan", impl=TokenizerImpl.SentencePiece, level="byte-level", org="Baichuan"), TokenizerConfig("baichuan-inc/Baichuan2-7B-Chat", name_display="baichuan-inc/baichuan2", impl=TokenizerImpl.SentencePiece, org="Baichuan", desc="expand the vocabulary size from 64000 in Baichuan1 to 125696"), TokenizerConfig("internlm/internlm-chat-7b", impl=TokenizerImpl.SentencePiece, org="Shanghai AI Lab"), # 上海AI实验室 + 商汤 TokenizerConfig("internlm/internlm2-chat-7b", impl=TokenizerImpl.SentencePiece, org="Shanghai AI Lab"), TokenizerConfig("internlm/internlm2-math-7b", impl=TokenizerImpl.SentencePiece, org="Shanghai AI Lab"), TokenizerConfig("internlm/internlm-xcomposer-7b", impl=TokenizerImpl.SentencePiece, org="Shanghai AI Lab"), TokenizerConfig("tiiuae/falcon-7b", impl=TokenizerImpl.SentencePiece, org="TII"), TokenizerConfig("tiiuae/falcon-180b", impl=TokenizerImpl.SentencePiece, org="TII"), TokenizerConfig("Skywork/Skywork-13B-base", impl=TokenizerImpl.SentencePiece, org="Kunlun"), TokenizerConfig("Skywork/Skywork-13B-Math", impl=TokenizerImpl.SentencePiece, org="Kunlun"), # 文件:tokenizer.model TokenizerConfig("FacebookAI/xlm-roberta-base", impl=TokenizerImpl.SentencePiece, org="Facebook"), # 这个的tokenizer.json 为什么没有merges? vocab里为什么有概率值? # "goat", # ##### glm系列 # "glm_chinese",), TokenizerConfig("THUDM/chatglm-6b", impl=TokenizerImpl.SentencePiece, org="Tsinghua", meta=f"num_image_tokens: {12}; num_image_tokens: {34} ", init_kwargs={"revision": "refs/pr/100"}), TokenizerConfig("THUDM/chatglm2-6b", impl=TokenizerImpl.SentencePiece, org="Tsinghua", ), TokenizerConfig("THUDM/chatglm3-6b", impl=TokenizerImpl.SentencePiece, org="Tsinghua", ), TokenizerConfig("thu-coai/CharacterGLM-6B", impl=TokenizerImpl.SentencePiece, org="Tsinghua", ), # tiktoken 系列 TokenizerConfig("openai/text-davinci-003", impl=TokenizerImpl.TikToken, org="OpenAI", link="https://github.com/openai/tiktoken"), # TokenizerConfig("openai/code-davinci-002", impl=TokenizerImpl.TikToken, org="OpenAI", link="https://github.com/openai/tiktoken"), TokenizerConfig("openai/gpt-3.5-turbo", impl=TokenizerImpl.TikToken, org="OpenAI", link="https://github.com/openai/tiktoken", desc="tiktoken is a fast BPE tokeniser for use with OpenAI's models. There are 16 tokens KeyError"), TokenizerConfig("openai/gpt-4", impl=TokenizerImpl.TikToken, org="OpenAI", link="https://github.com/openai/tiktoken", ), TokenizerConfig("openai/gpt-4o", impl=TokenizerImpl.TikToken, org="OpenAI", link="https://github.com/openai/tiktoken", ), TokenizerConfig("Qwen/Qwen-7B-Chat", name_display="Qwen/Qwen", impl=TokenizerImpl.TikToken, org="Alibaba", init_kwargs={"revision": "refs/pr/56"}, meta="在gpt4词典基础上,删除了100个多数字token,增加10000中文词token;并优化了special_token的分词"), # https://huggingface.co/Qwen/Qwen-7B-Chat#%E6%A8%A1%E5%9E%8B%E7%BB%86%E8%8A%82%EF%BC%88model%EF%BC%89 # 该词表在GPT-4使用的BPE词表cl100k_base基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上, # 对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。 词表对数字按单个数字位切分。 # TokenizerConfig("Qwen/Qwen-72B-Chat", impl=TokenizerImpl.TikToken), # 未分类 # ("amber", ""), TokenizerConfig("LLM360/CrystalCoder", org="MBZUAI"), TokenizerConfig("apple/DCLM-7B", org="Apple"), TokenizerConfig("mistralai/Mistral-7B-v0.1", org="Mistral"), TokenizerConfig("mistralai/Mixtral-8x7B-v0.1", org="Mistral"), TokenizerConfig("mistralai/Mistral-Large-Instruct-2407", org="Mistral"), TokenizerConfig("paust/pko-t5-large", org="PAUST"), TokenizerConfig("01-ai/Yi-6B", org="Yi"), TokenizerConfig("01-ai/Yi-34B", org="Yi"), TokenizerConfig("01-ai/Yi-VL-34B", org="Yi"), TokenizerConfig("01-ai/Yi-1.5-34B", org="Yi"), TokenizerConfig("OrionStarAI/Orion-14B-Chat", org="OrionStar"), TokenizerConfig("microsoft/phi-1", org="Microsoft"), TokenizerConfig("microsoft/phi-2", org="Microsoft"), TokenizerConfig("microsoft/Phi-3-mini-4k-instruct", org="Microsoft", meta="即llama vocab"), TokenizerConfig("Upstage/SOLAR-10.7B-v1.0", org="-"), TokenizerConfig("google/mobilebert-uncased", org="Google"), # ("google/mobilenet_v2_1.0_224",), # error TokenizerConfig("google/switch-c-2048", org="Google"), TokenizerConfig("google/byt5-small", org="Google"), TokenizerConfig("google/mt5-large", org="Google"), TokenizerConfig("WizardLM/WizardCoder-Python-7B-V1.0", org="Microsoft"), TokenizerConfig("WizardLM/WizardCoder-15B-V1.0", org="Microsoft"), TokenizerConfig("WizardLM/WizardLM-7B-V1.0", org="Microsoft"), TokenizerConfig("WizardLM/WizardMath-70B-V1.0", org="Microsoft"), TokenizerConfig("TigerResearch/tigerbot-70b-chat-v4-4k", org="Tigerobo"), TokenizerConfig("TigerResearch/tigerbot-13b-chat-v2", org="Tigerobo"), TokenizerConfig("deepseek-ai/deepseek-coder-33b-instruct", org="DeepSeek"), TokenizerConfig("deepseek-ai/deepseek-llm-7b-base", org="DeepSeek"), TokenizerConfig("deepseek-ai/DeepSeek-V2", org="DeepSeek"), TokenizerConfig("google/gemma-7b", org="Google"), TokenizerConfig("google/gemma-2-9b", org="Google"), TokenizerConfig("allenai/OLMo-7B", org="Allen AI"), TokenizerConfig("HuggingFaceH4/zephyr-7b-beta", org="HuggingFace"), TokenizerConfig("ai21labs/Jamba-v0.1", org="AI21"), TokenizerConfig("databricks/dbrx-instruct", org="Databricks"), # ("claude",), # https://github.com/Duxiaoman-DI/XuanYuan # https://huggingface.co/apple/OpenELM-3B-Instruct https://huggingface.co/apple/OpenELM-3B ] assert len(set([config.name_display for config in _all_tokenizer_config])) == len(_all_tokenizer_config) assert len(set([config.name_or_path for config in _all_tokenizer_config])) == len(_all_tokenizer_config) assert len(set([config.name_or_path.split("/")[-1] for config in _all_tokenizer_config])) == len(_all_tokenizer_config) class TokenizerFactory: def __init__(self): # self.all_tokenizer_configs = sorted(_all_tokenizer_config, key=lambda k: k.name_or_path) self.all_tokenizer_configs = sorted(_all_tokenizer_config, key=lambda k: k.name_display) self.all_tokenizer_names = [config.name_or_path for config in self.all_tokenizer_configs] self.name_to_config_list = [ {config.name_or_path: config for config in self.all_tokenizer_configs}, {config.name_display: config for config in self.all_tokenizer_configs}, {config.name_display.split("/")[-1]: config for config in self.all_tokenizer_configs}, ] self.tokenizer_cache = {} def get_tokenizer_config(self, tokenizer_name: str) -> TokenizerConfig: for name_to_config in self.name_to_config_list: if tokenizer_name in name_to_config: return name_to_config[tokenizer_name] return None def get_tokenizer(self, tokenizer_name: str): """ :param tokenizer_name: :return: """ tokenizer_config = self.get_tokenizer_config(tokenizer_name) # 1. load from cache if tokenizer_config in self.tokenizer_cache: return self.tokenizer_cache[tokenizer_config] # 2. load tokenizer tokenizer = self.load_tokenizer(tokenizer_config) self.tokenizer_cache[tokenizer_config] = tokenizer return tokenizer def get_name_with_hyperlink(self, tokenizer_name: str) -> str: def model_hyperlink(link, model_name): model_name = model_name return f'{model_name}' tokenizer_config = self.get_tokenizer_config(tokenizer_name) return model_hyperlink(tokenizer_config.link, tokenizer_config.name_display.split("/")[-1]) def load_tokenizer(self, tokenizer_config): if tokenizer_config == None: print("dd") logger.info(f"loading tokenizer {tokenizer_config.name_or_path}") if tokenizer_config.impl == TokenizerImpl.TikToken and "openai" in tokenizer_config.name_or_path: tokenizer = tiktoken.encoding_for_model(tokenizer_config.name_or_path.replace("openai/", "")) else: tokenizer = AutoTokenizer.from_pretrained( tokenizer_config.name_or_path, trust_remote_code=True, **tokenizer_config.init_kwargs ) return tokenizer def add_config(self, ): pass def add_tokenizer(self, tokenizer_name): pass tokenizer_factory = TokenizerFactory() def add_tokenizer(tokenizer_name: str): """ :param tokenizer_name: :return: """ if tokenizer_name in []: logger.info(f"{tokenizer_name} already exits") else: # add to config tokenizer_config = TokenizerConfig(tokenizer_name, org="-") # add to tokenizer tokenizer = tokenizer_factory.load_tokenizer(tokenizer_config) # refresh cache try: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name, trust_remote_code=True, **tokenizer_config.init_kwargs ) tokenizer_factory.all_tokenizer_configs.append( "", ) tokenizer_factory except Exception as e: logger.error(e) pass # class TokenizerType(Enum): # # # BERTTokenizer # # 依赖一个txt文件 # # # # https://github.com/EleutherAI/gpt-neox/blob/v2.0/megatron/tokenizer/tokenizer.py#L231 # # 依赖一个json文件,Tokenizer.from_file(vocab_file) # # 案例:gpt-neox-20B # HFTokenizer = auto() # # # 依赖: model_file, sentencepiece.SentencePieceProcessor(model_file) # # 案例: # SentencePieceTokenizer = auto() # # # # 依赖: 3个json文件:vocab.json, merges.txt, special_tokens.txt # # 源码: # # - https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/tokenizer/gpt2_tokenization.py#L92 # # Byte-level BPE # GPT2BPETokenizer = auto() if __name__ == "__main__": for tokenizer_config in tokenizer_factory.all_tokenizer_configs: if True: # if "t5" in tokenizer_config.name_or_path: tokenizer1 = tokenizer_factory.get_tokenizer(tokenizer_config.name_or_path) tokenizer2 = tokenizer_factory.get_tokenizer(tokenizer_config.name_display) tokenizer3 = tokenizer_factory.get_tokenizer(tokenizer_config.name_display.split("/")[-1]) assert tokenizer1 == tokenizer2 == tokenizer3 print(tokenizer_config.name_or_path, len(tokenizer1))