|
import numpy as np |
|
|
|
|
|
with open("/home/yassinealouini/Documents/code/advent_of_code/aoc/year_2021/data/1.txt") as f: |
|
data = f.read().rstrip().split("\n") |
|
def main(): |
|
data = [int(e) for e in data] |
|
|
|
a = np.diff(data) |
|
print("Solution to first part: ", np.where(a > 0, 1, 0).sum()) |
|
|
|
|
|
|
|
a = np.convolve(data, np.ones(3,dtype=int),'valid') |
|
a = np.diff(a) |
|
print("Solution to second part: ", np.where(a > 0, 1, 0).sum()) |
|
|
|
|
|
def streamlit_torch_1(day_input): |
|
""" |
|
Day 1 solution for AoC using PyTorch |
|
""" |
|
import torch |
|
import streamlit as st |
|
data = day_input.rstrip().split(" ") |
|
data = torch.tensor([int(e) for e in data]) |
|
|
|
a = torch.diff(data) |
|
st.write("Solution to first part: ", torch.where(a > 0, 1, 0).sum()) |
|
|
|
|
|
|
|
|
|
|
|
a = torch.cumsum(data, axis=0) |
|
first_element = a[0] |
|
a = (a[3:] - a[:-3]) |
|
a = torch.cat((first_element.view(1), a)) |
|
a = torch.diff(a) |
|
st.write("Solution to second part: ", torch.where(a > 0, 1, 0).sum()) |
|
|
|
|
|
def streamlit_1(day_input): |
|
""" |
|
Day 1 solution for AoC |
|
""" |
|
import numpy as np |
|
import streamlit as st |
|
data = day_input.rstrip().split(" ") |
|
data = [int(e) for e in data] |
|
|
|
a = np.diff(data) |
|
st.write("Solution to first part: ", np.where(a > 0, 1, 0).sum()) |
|
|
|
|
|
|
|
a = np.convolve(data, np.ones(3,dtype=int),'valid') |
|
a = np.diff(a) |
|
st.write("Solution to second part: ", np.where(a > 0, 1, 0).sum()) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |