yama commited on
Commit
9e020be
1 Parent(s): 631631a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +256 -411
app.py CHANGED
@@ -1,443 +1,288 @@
1
- # import whisper
2
- from faster_whisper import WhisperModel
3
- import datetime
4
- import subprocess
5
- import gradio as gr
6
- from pathlib import Path
7
- import pandas as pd
8
- import re
9
- import time
10
  import os
 
11
  import numpy as np
12
- from sklearn.cluster import AgglomerativeClustering
13
- from sklearn.metrics import silhouette_score
14
-
15
- from pytube import YouTube
16
- import yt_dlp
17
- import torch
18
- import pyannote.audio
19
- from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
20
- from pyannote.audio import Audio
21
  from pyannote.core import Segment
 
 
 
 
22
 
23
- from gpuinfo import GPUInfo
24
 
25
- import wave
26
- import contextlib
27
- from transformers import pipeline
28
- import psutil
29
-
30
- whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
31
- source_languages = {
32
- "en": "English",
33
- # "zh": "Chinese",
34
- # "de": "German",
35
- # "es": "Spanish",
36
- # "ru": "Russian",
37
- # "ko": "Korean",
38
- # "fr": "French",
39
- "ja": "Japanese",
40
- # "pt": "Portuguese",
41
- # "tr": "Turkish",
42
- # "pl": "Polish",
43
- # "ca": "Catalan",
44
- # "nl": "Dutch",
45
- # "ar": "Arabic",
46
- # "sv": "Swedish",
47
- # "it": "Italian",
48
- # "id": "Indonesian",
49
- # "hi": "Hindi",
50
- # "fi": "Finnish",
51
- # "vi": "Vietnamese",
52
- # "he": "Hebrew",
53
- # "uk": "Ukrainian",
54
- # "el": "Greek",
55
- # "ms": "Malay",
56
- # "cs": "Czech",
57
- # "ro": "Romanian",
58
- # "da": "Danish",
59
- # "hu": "Hungarian",
60
- # "ta": "Tamil",
61
- # "no": "Norwegian",
62
- # "th": "Thai",
63
- # "ur": "Urdu",
64
- # "hr": "Croatian",
65
- # "bg": "Bulgarian",
66
- # "lt": "Lithuanian",
67
- # "la": "Latin",
68
- # "mi": "Maori",
69
- # "ml": "Malayalam",
70
- # "cy": "Welsh",
71
- # "sk": "Slovak",
72
- # "te": "Telugu",
73
- # "fa": "Persian",
74
- # "lv": "Latvian",
75
- # "bn": "Bengali",
76
- # "sr": "Serbian",
77
- # "az": "Azerbaijani",
78
- # "sl": "Slovenian",
79
- # "kn": "Kannada",
80
- # "et": "Estonian",
81
- # "mk": "Macedonian",
82
- # "br": "Breton",
83
- # "eu": "Basque",
84
- # "is": "Icelandic",
85
- # "hy": "Armenian",
86
- # "ne": "Nepali",
87
- # "mn": "Mongolian",
88
- # "bs": "Bosnian",
89
- # "kk": "Kazakh",
90
- # "sq": "Albanian",
91
- # "sw": "Swahili",
92
- # "gl": "Galician",
93
- # "mr": "Marathi",
94
- # "pa": "Punjabi",
95
- # "si": "Sinhala",
96
- # "km": "Khmer",
97
- # "sn": "Shona",
98
- # "yo": "Yoruba",
99
- # "so": "Somali",
100
- # "af": "Afrikaans",
101
- # "oc": "Occitan",
102
- # "ka": "Georgian",
103
- # "be": "Belarusian",
104
- # "tg": "Tajik",
105
- # "sd": "Sindhi",
106
- # "gu": "Gujarati",
107
- # "am": "Amharic",
108
- # "yi": "Yiddish",
109
- # "lo": "Lao",
110
- # "uz": "Uzbek",
111
- # "fo": "Faroese",
112
- # "ht": "Haitian creole",
113
- # "ps": "Pashto",
114
- # "tk": "Turkmen",
115
- # "nn": "Nynorsk",
116
- # "mt": "Maltese",
117
- # "sa": "Sanskrit",
118
- # "lb": "Luxembourgish",
119
- # "my": "Myanmar",
120
- # "bo": "Tibetan",
121
- # "tl": "Tagalog",
122
- # "mg": "Malagasy",
123
- # "as": "Assamese",
124
- # "tt": "Tatar",
125
- # "haw": "Hawaiian",
126
- # "ln": "Lingala",
127
- # "ha": "Hausa",
128
- # "ba": "Bashkir",
129
- # "jw": "Javanese",
130
- # "su": "Sundanese",
131
- }
132
-
133
- source_language_list = [key[0] for key in source_languages.items()]
134
-
135
- MODEL_NAME = "vumichien/whisper-medium-jp"
136
- lang = "ja"
137
-
138
- device = 0 if torch.cuda.is_available() else "cpu"
139
- pipe = pipeline(
140
- task="automatic-speech-recognition",
141
- model=MODEL_NAME,
142
- chunk_length_s=30,
143
- device=device,
144
- )
145
- os.makedirs('output', exist_ok=True)
146
- pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
147
 
148
- embedding_model = PretrainedSpeakerEmbedding(
149
- "speechbrain/spkrec-ecapa-voxceleb",
150
- device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
- def transcribe(microphone, file_upload):
154
- warn_output = ""
155
- if (microphone is not None) and (file_upload is not None):
156
- warn_output = (
157
- "WARNING: You've uploaded an audio file and used the microphone. "
158
- "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
159
- )
160
 
161
- elif (microphone is None) and (file_upload is None):
162
- return "ERROR: You have to either use the microphone or upload an audio file"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
- file = microphone if microphone is not None else file_upload
 
 
165
 
166
- text = pipe(file)["text"]
 
 
 
167
 
168
- return warn_output + text
 
169
 
 
 
170
 
171
- def _return_yt_html_embed(yt_url):
172
- video_id = yt_url.split("?v=")[-1]
173
- HTML_str = (
174
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
175
- " </center>"
176
- )
177
- return HTML_str
178
 
 
 
 
179
 
180
- def yt_transcribe(yt_url):
181
- # yt = YouTube(yt_url)
182
- # html_embed_str = _return_yt_html_embed(yt_url)
183
- # stream = yt.streams.filter(only_audio=True)[0]
184
- # stream.download(filename="audio.mp3")
185
 
186
- ydl_opts = {
187
- 'format': 'bestvideo*+bestaudio/best',
188
- 'postprocessors': [{
189
- 'key': 'FFmpegExtractAudio',
190
- 'preferredcodec': 'mp3',
191
- 'preferredquality': '192',
192
- }],
193
- 'outtmpl': 'audio.%(ext)s',
194
- }
 
 
 
 
 
195
 
196
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
197
- ydl.download([yt_url])
198
 
199
- text = pipe("audio.mp3")["text"]
200
- return html_embed_str, text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
 
 
 
 
 
202
 
203
- def convert_time(secs):
204
- return datetime.timedelta(seconds=round(secs))
205
 
 
 
206
 
207
- def get_youtube(video_url):
208
- # yt = YouTube(video_url)
209
- # abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
210
 
211
- ydl_opts = {
212
- 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
213
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
214
 
215
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
216
- info = ydl.extract_info(video_url, download=False)
217
- abs_video_path = ydl.prepare_filename(info)
218
- ydl.process_info(info)
219
 
220
- print("Success download video")
221
- print(abs_video_path)
222
- return abs_video_path
223
 
224
 
225
- def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
226
  """
227
- # Transcribe youtube link using OpenAI Whisper
228
- 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
229
- 2. Generating speaker embeddings for each segments.
230
- 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
 
232
- Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
233
- Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
234
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
 
236
- # model = whisper.load_model(whisper_model)
237
- # model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
238
- model = WhisperModel(whisper_model, compute_type="int8")
239
- time_start = time.time()
240
- if (video_file_path == None):
241
- raise ValueError("Error no video input")
242
- print(video_file_path)
243
-
244
- try:
245
- # Read and convert youtube video
246
- _, file_ending = os.path.splitext(f'{video_file_path}')
247
- print(f'file enging is {file_ending}')
248
- audio_file = video_file_path.replace(file_ending, ".wav")
249
- print("starting conversion to wav")
250
- os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
251
-
252
- # Get duration
253
- with contextlib.closing(wave.open(audio_file, 'r')) as f:
254
- frames = f.getnframes()
255
- rate = f.getframerate()
256
- duration = frames / float(rate)
257
- print(f"conversion to wav ready, duration of audio file: {duration}")
258
-
259
- # Transcribe audio
260
- options = dict(language=selected_source_lang, beam_size=5, best_of=5)
261
- transcribe_options = dict(task="transcribe", **options)
262
- segments_raw, info = model.transcribe(audio_file, **transcribe_options)
263
-
264
- # Convert back to original openai format
265
- segments = []
266
- i = 0
267
- for segment_chunk in segments_raw:
268
- chunk = {}
269
- chunk["start"] = segment_chunk.start
270
- chunk["end"] = segment_chunk.end
271
- chunk["text"] = segment_chunk.text
272
- segments.append(chunk)
273
- i += 1
274
- print("transcribe audio done with fast whisper")
275
- except Exception as e:
276
- raise RuntimeError("Error converting video to audio")
277
-
278
- try:
279
- # Create embedding
280
- def segment_embedding(segment):
281
- audio = Audio()
282
- start = segment["start"]
283
- # Whisper overshoots the end timestamp in the last segment
284
- end = min(duration, segment["end"])
285
- clip = Segment(start, end)
286
- waveform, sample_rate = audio.crop(audio_file, clip)
287
- return embedding_model(waveform[None])
288
-
289
- embeddings = np.zeros(shape=(len(segments), 192))
290
- for i, segment in enumerate(segments):
291
- embeddings[i] = segment_embedding(segment)
292
- embeddings = np.nan_to_num(embeddings)
293
- print(f'Embedding shape: {embeddings.shape}')
294
-
295
- if num_speakers == 0:
296
- # Find the best number of speakers
297
- score_num_speakers = {}
298
-
299
- for num_speakers in range(2, 10 + 1):
300
- clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
301
- score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
302
- score_num_speakers[num_speakers] = score
303
- best_num_speaker = max(score_num_speakers, key=lambda x: score_num_speakers[x])
304
- print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
305
- else:
306
- best_num_speaker = num_speakers
307
-
308
- # Assign speaker label
309
- clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
310
- labels = clustering.labels_
311
- for i in range(len(segments)):
312
- segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
313
-
314
- # Make output
315
- objects = {
316
- 'Start': [],
317
- 'End': [],
318
- 'Speaker': [],
319
- 'Text': []
320
- }
321
- text = ''
322
- for (i, segment) in enumerate(segments):
323
- if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
324
- objects['Start'].append(str(convert_time(segment["start"])))
325
- objects['Speaker'].append(segment["speaker"])
326
- if i != 0:
327
- objects['End'].append(str(convert_time(segments[i - 1]["end"])))
328
- objects['Text'].append(text)
329
- text = ''
330
- text += segment["text"] + ' '
331
- objects['End'].append(str(convert_time(segments[i - 1]["end"])))
332
- objects['Text'].append(text)
333
-
334
- time_end = time.time()
335
- time_diff = time_end - time_start
336
- memory = psutil.virtual_memory()
337
- gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
338
- gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
339
- gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
340
- system_info = f"""
341
- *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
342
- *Processing time: {time_diff:.5} seconds.*
343
- *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
344
- """
345
- save_path = "output/transcript_result.csv"
346
- df_results = pd.DataFrame(objects)
347
- df_results.to_csv(save_path)
348
- return df_results, system_info, save_path
349
-
350
- except Exception as e:
351
- raise RuntimeError("Error Running inference with local model", e)
352
-
353
-
354
- # ---- Gradio Layout -----
355
- # Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
356
- video_in = gr.Video(label="Video file", mirror_webcam=False)
357
- youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
358
- df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
359
- memory = psutil.virtual_memory()
360
- selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="ja",
361
- label="Spoken language in video", interactive=True)
362
- selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model",
363
- interactive=True)
364
- number_speakers = gr.Number(precision=0, value=0,
365
- label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers",
366
- interactive=True)
367
- system_info = gr.Markdown(
368
- f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
369
- download_transcript = gr.File(label="Download transcript")
370
- transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=(0, "dynamic"), max_rows=10,
371
- wrap=True, overflow_row_behaviour='paginate')
372
- title = "Whisper speaker diarization"
373
- demo = gr.Blocks(title=title)
374
- demo.encrypt = False
375
-
376
- with demo:
377
- with gr.Tab("Whisper speaker diarization"):
378
- gr.Markdown('''
379
- <div>
380
- <h1 style='text-align: center'>Whisper speaker diarization</h1>
381
- This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> with <a href='https://github.com/guillaumekln/faster-whisper' target='_blank'><b>CTranslate2</b></a> which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy)
382
- and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers
383
- </div>
384
- ''')
385
-
386
- with gr.Row():
387
- gr.Markdown('''
388
- ### Transcribe youtube link using OpenAI Whisper
389
- ##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
390
- ##### 2. Generating speaker embeddings for each segments.
391
- ##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
392
- ''')
393
-
394
- with gr.Row():
395
- gr.Markdown('''
396
- ### You can test by following examples:
397
- ''')
398
- examples = gr.Examples(examples=
399
- ["https://www.youtube.com/watch?v=j7BfEzAFuYc&t=32s",
400
- "https://www.youtube.com/watch?v=-UX0X45sYe4",
401
- "https://www.youtube.com/watch?v=7minSgqi-Gw"],
402
- label="Examples", inputs=[youtube_url_in])
403
-
404
- with gr.Row():
405
- with gr.Column():
406
- youtube_url_in.render()
407
- download_youtube_btn = gr.Button("Download Youtube video")
408
- download_youtube_btn.click(get_youtube, [youtube_url_in], [
409
- video_in])
410
- print(video_in)
411
-
412
- with gr.Row():
413
- with gr.Column():
414
- video_in.render()
415
- with gr.Column():
416
- gr.Markdown('''
417
- ##### Here you can start the transcription process.
418
- ##### Please select the source language for transcription.
419
- ##### You can select a range of assumed numbers of speakers.
420
- ''')
421
- selected_source_lang.render()
422
- selected_whisper_model.render()
423
- number_speakers.render()
424
- transcribe_btn = gr.Button("Transcribe audio and diarization")
425
- transcribe_btn.click(speech_to_text,
426
- [video_in, selected_source_lang, selected_whisper_model, number_speakers],
427
- [transcription_df, system_info, download_transcript]
428
- )
429
-
430
- with gr.Row():
431
- gr.Markdown('''
432
- ##### Here you will get transcription output
433
- ##### ''')
434
-
435
- with gr.Row():
436
- with gr.Column():
437
- download_transcript.render()
438
- transcription_df.render()
439
- system_info.render()
440
- gr.Markdown(
441
- '''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
442
-
443
- demo.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import wave
3
  import numpy as np
4
+ import contextlib
5
+ from pydub import AudioSegment
 
 
 
 
 
 
 
6
  from pyannote.core import Segment
7
+ from pyannote.audio import Audio
8
+ from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
9
+ import torch
10
+ from typing import Dict, List, Tuple
11
 
 
12
 
13
+ def convert_to_wav(input_file: str, output_file: str = "output_file.wav") -> str:
14
+ """
15
+ 音声ファイルをWAV形式に変換します。
16
+
17
+ Parameters
18
+ ----------
19
+ input_file: str
20
+ 変換する音声ファイルのパス
21
+ output_file: str
22
+ 変換後のWAVファイルの出力先パス(デフォルトは"output_file.wav"
23
+ Returns
24
+ -------
25
+ str
26
+ 変換後のWAVファイルのパス
27
+ """
28
+ file_format = os.path.splitext(input_file)[1][1:]
29
+ audio = AudioSegment.from_file(input_file, format=file_format)
30
+ audio.export(output_file, format="wav")
31
+ return output_file
32
+
33
+
34
+ def segment_embedding(
35
+ file_name: str,
36
+ duration: float,
37
+ segment,
38
+ embedding_model: PretrainedSpeakerEmbedding
39
+ ) -> np.ndarray:
40
+ """
41
+ 音声ファイルから指定されたセグメントの埋め込みを計算します。
42
+
43
+ Parameters
44
+ ----------
45
+ file_name: str
46
+ 音声ファイルのパス
47
+ duration: float
48
+ 音声ファイルの継続時間
49
+ segment: whisperのtranscribeのsegment
50
+ embedding_model: PretrainedSpeakerEmbedding
51
+ 埋め込みモデル
52
+ Returns
53
+ -------
54
+ np.ndarray
55
+ 計算された埋め込みベクトル
56
+ """
57
+ audio = Audio()
58
+ start = segment["start"]
59
+ end = min(duration, segment["end"])
60
+ clip = Segment(start, end)
61
+ waveform, sample_rate = audio.crop(file_name, clip)
62
+ return embedding_model(waveform[None])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
 
 
 
64
 
65
+ def reference_audio_embedding(
66
+ file_name: str
67
+ ) -> np.ndarray:
68
+ """
69
+ 参考音声の埋め込みを出力します。
70
+
71
+ Parameters
72
+ ----------
73
+ file_name: str
74
+ 音声ファイルのパス
75
+ Returns
76
+ -------
77
+ np.ndarray
78
+ 計算された埋め込みベクトル
79
+ """
80
+ audio = Audio()
81
+ waveform, sample_rate = audio(file_name)
82
+ embedding_model = embedding_model = PretrainedSpeakerEmbedding("speechbrain/spkrec-ecapa-voxceleb", device='cpu')
83
+ return embedding_model(waveform[None])[0]
84
 
 
 
 
 
 
 
 
85
 
86
+ def generate_speaker_embeddings(
87
+ meeting_file_path: str,
88
+ transcript
89
+ ) -> np.ndarray:
90
+ """
91
+ 音声ファイルから話者の埋め込みを計算します。
92
+
93
+ Parameters
94
+ ----------
95
+ meeting_file_path: str
96
+ 音声ファイルのパス
97
+ transcript: Whisper API の transcribe メソッドの出力結果
98
+ Returns
99
+ -------
100
+ np.ndarray
101
+ 計算された話者の埋め込み群
102
+ """
103
+ output_file = convert_to_wav(meeting_file_path)
104
 
105
+ segments = transcript['segments']
106
+ embedding_model = PretrainedSpeakerEmbedding("speechbrain/spkrec-ecapa-voxceleb", device='cpu')
107
+ embeddings = np.zeros(shape=(len(segments), 192))
108
 
109
+ with contextlib.closing(wave.open(output_file, 'r')) as f:
110
+ frames = f.getnframes()
111
+ rate = f.getframerate()
112
+ duration = frames / float(rate)
113
 
114
+ for i, segment in enumerate(segments):
115
+ embeddings[i] = segment_embedding(output_file, duration, segment, embedding_model)
116
 
117
+ embeddings = np.nan_to_num(embeddings)
118
+ return embeddings
119
 
 
 
 
 
 
 
 
120
 
121
+ import numpy as np
122
+ from sklearn.cluster import AgglomerativeClustering
123
+ from typing import List, Tuple
124
 
 
 
 
 
 
125
 
126
+ def clustering_embeddings(speaker_count: int, embeddings: np.ndarray) -> AgglomerativeClustering:
127
+ """
128
+ 埋め込みデータをクラスタリングして、クラスタリングオブジェクトを返します。
129
+ Parameters
130
+ ----------
131
+ embeddings: np.ndarray
132
+ 分散表現(埋め込み)のリスト。
133
+ Returns
134
+ -------
135
+ AgglomerativeClustering
136
+ クラスタリングオブジェクト。
137
+ """
138
+ clustering = AgglomerativeClustering(speaker_count).fit(embeddings)
139
+ return clustering
140
 
 
 
141
 
142
+ def format_speaker_output_by_segment(clustering: AgglomerativeClustering, transcript: dict) -> str:
143
+ """
144
+ クラスタリングの結果をもとに、各発話者ごとにセグメントを整形して出力します
145
+ Parameters
146
+ ----------
147
+ clustering: AgglomerativeClustering
148
+ クラスタリングオブジェクト。
149
+ transcript: dict
150
+ Whisper API の transcribe メソッドの出力結果
151
+ Returns
152
+ -------
153
+ str
154
+ 発話者ごとに整形されたセグメントの文字列
155
+ """
156
+ labeled_segments = []
157
+ for label, segment in zip(clustering.labels_, transcript["segments"]):
158
+ labeled_segments.append((label, segment["start"], segment["text"]))
159
 
160
+ output = ""
161
+ for speaker, _, text in labeled_segments:
162
+ output += f"話者{speaker + 1}: 「{text}」\n"
163
+ return output
164
 
 
 
165
 
166
+ from sklearn.cluster import KMeans
167
+ from sklearn.metrics.pairwise import pairwise_distances
168
 
 
 
 
169
 
170
+ def clustering_embeddings2(speaker_count: int, embeddings: np.ndarray) -> KMeans:
171
+ """
172
+ 埋め込みデータをクラスタリングして、クラスタリングオブジェクトを返します。
173
+ Parameters
174
+ ----------
175
+ embeddings: np.ndarray
176
+ 分散表現(埋め込み)のリスト。
177
+ Returns
178
+ -------
179
+ KMeans
180
+ クラスタリングオブジェクト。
181
+ """
182
+ # コサイン類似度行列を計算
183
+ cosine_distances = pairwise_distances(embeddings, metric='cosine')
184
+ clustering = KMeans(n_clusters=speaker_count).fit(cosine_distances)
185
+ return clustering
186
 
 
 
 
 
187
 
188
+ from scipy.spatial.distance import cosine
 
 
189
 
190
 
191
+ def closest_reference_speaker(embedding: np.ndarray, references: List[Tuple[str, np.ndarray]]) -> str:
192
  """
193
+ 与えられた埋め込みに最も近い参照話者を返します。
194
+ Parameters
195
+ ----------
196
+ embedding: np.ndarray
197
+ 話者の埋め込み
198
+ references: List[Tuple[str, np.ndarray]]
199
+ 参照話者の名前と埋め込みのリスト
200
+ Returns
201
+ -------
202
+ str
203
+ 最も近い参照話者の名前
204
+ """
205
+ min_distance = float('inf')
206
+ closest_speaker = None
207
+ for name, reference_embedding in references:
208
+ distance = cosine(embedding, reference_embedding)
209
+ if distance < min_distance:
210
+ min_distance = distance
211
+ closest_speaker = name
212
+
213
+ return closest_speaker
214
+
215
 
216
+ def format_speaker_output_by_segment2(embeddings: np.ndarray, transcript: dict,
217
+ reference_embeddings: List[Tuple[str, np.ndarray]]) -> str:
218
  """
219
+ 各発話者の埋め込みに基づいて、セグメントを整形して出力します。
220
+ Parameters
221
+ ----------
222
+ embeddings: np.ndarray
223
+ 話者の埋め込みのリスト
224
+ transcript: dict
225
+ Whisper API の transcribe メソッドの出力結果
226
+ reference_embeddings: List[Tuple[str, np.ndarray]]
227
+ 参照話者の名前と埋め込みのリスト
228
+ Returns
229
+ -------
230
+ str
231
+ 発話者ごとに整形されたセグメントの文字列。
232
+ """
233
+ labeled_segments = []
234
+ for embedding, segment in zip(embeddings, transcript["segments"]):
235
+ speaker_name = closest_reference_speaker(embedding, reference_embeddings)
236
+ labeled_segments.append((speaker_name, segment["start"], segment["text"]))
237
+
238
+ output = ""
239
+ for speaker, _, text in labeled_segments:
240
+ output += f"{speaker}: 「{text}」\n"
241
+ return output
242
+
243
+
244
+ import gradio as gr
245
+ import openai
246
+
247
+
248
+ def create_transcription_with_speaker(openai_key, main_audio, reference_audio_1, reference1_name,
249
+ reference_audio_2, reference2_name, speaker_count=2):
250
+ openai.api_key = openai_key
251
+ # 文字起こし
252
+ transcript = openai.Audio.transcribe("whisper-1", open(main_audio, "rb"), response_format="verbose_json")
253
+ # 各発話をembeddingsに変換
254
+ embeddings = generate_speaker_embeddings(main_audio, transcript)
255
+ # 各発話のembeddingsをクラスタリング
256
+ clustering = clustering_embeddings(speaker_count, embeddings)
257
+ # クラスタリングで作られた仮のラベルで各セグメントに名前付け
258
+ output_by_segment1 = format_speaker_output_by_segment(clustering, transcript)
259
+ reference1 = reference_audio_embedding(reference_audio_1)
260
+ reference2 = reference_audio_embedding(reference_audio_2)
261
+ reference_embeddings = [(reference1_name, reference1), (reference2_name, reference2)]
262
+ output_by_segment2 = format_speaker_output_by_segment2(embeddings, transcript, reference_embeddings)
263
+ return output_by_segment1, output_by_segment2
264
+
265
+
266
+ inputs = [
267
+ gr.Textbox(lines=1, label="openai_key", type="password"),
268
+ gr.Audio(type="filepath", label="メイン音声ファイル"),
269
+ gr.Audio(type="filepath", label="話者 (1) 参考音声ファイル"),
270
+ gr.Textbox(lines=1, label="話者 (1) の名前"),
271
+ gr.Audio(type="filepath", label="話者 (2) 参考音声ファイル"),
272
+ gr.Textbox(lines=1, label="話者 (2) の名前")
273
+ ]
274
+
275
+ outputs = [
276
+ gr.Textbox(label="話者クラスタリング文字起こし"),
277
+ gr.Textbox(label="話者アサイン文字起こし"),
278
+ ]
279
+
280
+ app = gr.Interface(
281
+ fn=create_transcription_with_speaker,
282
+ inputs=inputs,
283
+ outputs=outputs,
284
+ title="話者アサイン機能付き書き起こしアプリ",
285
+ description="音声ファイルをアップロードすると、話者分離した文字起こしが作成されます。"
286
+ )
287
 
288
+ app.launch(debug=True)