import requests import tensorflow as tf import gradio as gr inception_net = tf.keras.applications.MobileNetV2() # load the model # Download human-readable labels for ImageNet. response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() return {labels[i]: float(prediction[i]) for i in range(1000)} image = gr.Image(shape=(224, 224)) label = gr.Label(num_top_classes=3) title="Gradio Image Classifiction + interpretation Example" gr.Interface( fn=classify_image, inputs=image, outputs=label, interpretation="default",title=title ).launch()