# import os # import gradio as gr # from transformers import BlipProcessor ,BlipForConditionalGeneration # from PIL import Image # from transformers import CLIPProcessor, ChineseCLIPVisionModel ,AutoProcessor # # # 设置环境变量 HF_HOME 和 HF_ENDPOINT # # os.environ['HF_HOME'] = 'D:/AI/OCR/img2text/models' # # os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # # # # model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") # # processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") # # 加载模型和处理器 # # processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") # # model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") # processor = BlipProcessor.from_pretrained("IDEA-CCNL/Taiyi-BLIP-750M-Chinese") # model = BlipForConditionalGeneration.from_pretrained("IDEA-CCNL/Taiyi-BLIP-750M-Chinese") # def generate_caption(image): # # 确保 image 是 PIL.Image 类型 # if not isinstance(image, Image.Image): # raise ValueError("Input must be a PIL.Image") # # inputs = processor(image, return_tensors="pt") # input_ids = inputs.get("input_ids") # if input_ids is None: # raise ValueError("Processor did not return input_ids") # # outputs = model.generate(input_ids=input_ids, max_length=50) # description = processor.decode(outputs[0], skip_special_tokens=True) # return description # # # 创建Gradio接口 # gradio_app = gr.Interface( # fn=generate_caption, # inputs=gr.Image(type="pil"), # outputs="text", # title="图片描述生成器", # description="上传一张图片,生成相应的描述。" # ) # # if __name__ == "__main__": # gradio_app.launch() import gradio as gr import torch import os from transformers import BlipForConditionalGeneration, BlipProcessor, GenerationConfig print(torch.__version__) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') _MODEL_PATH = 'IDEA-CCNL/Taiyi-BLIP-750M-Chinese' HF_TOKEN = os.getenv('HF_TOKEN') processor = BlipProcessor.from_pretrained("IDEA-CCNL/Taiyi-BLIP-750M-Chinese", use_auth_token=HF_TOKEN) model = BlipForConditionalGeneration.from_pretrained("IDEA-CCNL/Taiyi-BLIP-750M-Chinese", use_auth_token=HF_TOKEN).eval().to(device) # processor = BlipProcessor.from_pretrained(_MODEL_PATH, use_auth_token=HF_TOKEN) # model = BlipForConditionalGeneration.from_pretrained( # _MODEL_PATH, use_auth_token=HF_TOKEN).eval().to(device) def inference(raw_image, model_n, strategy): if model_n == 'Image Captioning': inputs = processor(raw_image ,return_tensors= "pt").to(device) with torch.no_grad(): if strategy == "Beam search": # Beam search,即集束搜索,每次生成多个词,然后选择概率最大的前 k 个词,然后继续生成,直到生成结束 config = GenerationConfig( do_sample=False, num_beams=3, max_length=50, min_length=5, ) captions = model.generate(**inputs ,generation_config=config) else: # Nucleus sampling,即 top-p sampling,只保留累积概率大于 p 的词,然后重新归一化,得到一个新的概率分布,再从中采样,这样可以保证采样的结果更多样 config = GenerationConfig( do_sample=True, top_p=0.8, max_length=50, min_length=5, ) captions = model.generate(**inputs ,generation_config=config) caption = processor.decode(captions[0], skip_special_tokens=True) caption = caption.replace(' ', '') print(caption) return caption inputs = [ gr.Image(type='pil', label="Upload Image"), gr.Radio(choices=['Image Captioning'], value="Image Captioning", label="Task"),# 任务选择,目前只有图片描述生成 gr.Radio(choices=['Beam search', 'Nucleus sampling'], value="Nucleus sampling", label="Caption Decoding Strategy")# 两种生成策略,Beam search 和 Nucleus sampling,前者生成的结果更准确,后者更多样 ] outputs = gr.Textbox(label="Output") title = "图片描述生成器" gradio_app=gr.Interface(inference, inputs, outputs, title=title, examples=[ ['demo.jpg', "Image Captioning", "Nucleus sampling"] ]) if __name__ == "__main__": gradio_app.launch()