Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import csv | |
import os | |
import json | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from tensorflow.keras.layers import TFSMLayer | |
from huggingface_hub import hf_hub_download | |
from pathlib import Path | |
# 画像サイズの設定 | |
IMAGE_SIZE = 448 | |
# デフォルトのタグ付けリポジトリとファイル構成 | |
DEFAULT_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2" | |
MODEL_FILES = ["keras_metadata.pb", "saved_model.pb", "selected_tags.csv"] | |
VAR_DIR = "variables" | |
VAR_FILES = ["variables.data-00000-of-00001", "variables.index"] | |
CSV_FILE = MODEL_FILES[-1] | |
def preprocess_image(image): | |
"""画像を前処理して正方形に変換""" | |
img = np.array(image)[:, :, ::-1] # RGB->BGR | |
size = max(img.shape[:2]) | |
pad_x, pad_y = size - img.shape[1], size - img.shape[0] | |
img = np.pad(img, ((pad_y // 2, pad_y - pad_y // 2), (pad_x // 2, pad_x - pad_x // 2), (0, 0)), mode="constant", constant_values=255) | |
interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4 | |
img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp) | |
return img.astype(np.float32) | |
def download_model_files(repo_id, model_dir, sub_dir, files, sub_files): | |
"""モデルファイルをHugging Face Hubからダウンロード""" | |
for file in files: | |
hf_hub_download(repo_id, file, cache_dir=model_dir, force_download=True, force_filename=file) | |
for file in sub_files: | |
hf_hub_download(repo_id, file, subfolder=sub_dir, cache_dir=os.path.join(model_dir, sub_dir), force_download=True, force_filename=file) | |
def load_wd14_tagger_model(): | |
"""WD14タグ付けモデルをロード""" | |
model_dir = "wd14_tagger_model" | |
if not os.path.exists(model_dir): | |
download_model_files(DEFAULT_REPO, model_dir, VAR_DIR, MODEL_FILES, VAR_FILES) | |
else: | |
print("Using existing model") | |
return TFSMLayer(model_dir, call_endpoint='serving_default') | |
def read_tags_from_csv(csv_path): | |
"""CSVファイルからタグを読み取る""" | |
with open(csv_path, "r", encoding="utf-8") as f: | |
reader = csv.reader(f) | |
tags = [row for row in reader] | |
header = tags[0] | |
rows = tags[1:] | |
assert header[:3] == ["tag_id", "name", "category"], f"Unexpected CSV format: {header}" | |
return rows | |
def generate_tags(images, model_dir, model): | |
"""画像にタグを生成""" | |
rows = read_tags_from_csv(os.path.join(model_dir, CSV_FILE)) | |
general_tags = [row[1] for row in rows if row[2] == "0"] | |
character_tags = [row[1] for row in rows if row[2] == "4"] | |
tag_freq = {} | |
undesired_tags = {'one-piece_swimsuit', 'swimsuit', 'leotard', 'saitama_(one-punch_man)', '1boy'} | |
probs = model(images, training=False)['predictions_sigmoid'].numpy() | |
tag_text_list = [] | |
for prob in probs: | |
tags_combined = [] | |
for i, p in enumerate(prob[4:]): | |
tag_list = general_tags if i < len(general_tags) else character_tags | |
tag = tag_list[i - len(general_tags)] if i >= len(general_tags) else tag_list[i] | |
if p >= 0.35 and tag not in undesired_tags: | |
tag_freq[tag] = tag_freq.get(tag, 0) + 1 | |
tags_combined.append(tag) | |
tag_text_list.append(", ".join(tags_combined)) | |
return tag_text_list | |