Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from PIL import Image | |
import torchvision.transforms as transforms | |
try: | |
from transforms import InterpolationMode | |
bic = InterpolationMode.BICUBIC | |
except ImportError: | |
bic = Image.BICUBIC | |
import numpy as np | |
import torch | |
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP'] | |
def is_image_file(filename): | |
"""if a given filename is a valid image | |
Parameters: | |
filename (str) -- image filename | |
""" | |
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) | |
def get_image_list(path): | |
"""read the paths of valid images from the given directory path | |
Parameters: | |
path (str) -- input directory path | |
""" | |
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) | |
images = [] | |
for dirpath, _, fnames in sorted(os.walk(path)): | |
for fname in sorted(fnames): | |
if is_image_file(fname): | |
img_path = os.path.join(dirpath, fname) | |
images.append(img_path) | |
assert images, '{:s} has no valid image file'.format(path) | |
return images | |
def get_transform(load_size=0, grayscale=False, method=bic, convert=True): | |
transform_list = [] | |
if grayscale: | |
transform_list.append(transforms.Grayscale(1)) | |
if load_size > 0: | |
osize = [load_size, load_size] | |
transform_list.append(transforms.Resize(osize, method, antialias=False)) | |
if convert: | |
# transform_list += [transforms.ToTensor()] | |
if grayscale: | |
transform_list += [transforms.Normalize((0.5,), (0.5,))] | |
else: | |
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] | |
return transforms.Compose(transform_list) | |
def read_img_path(path, load_size): | |
"""read tensors from a given image path | |
Parameters: | |
path (str) -- input image path | |
load_size(int) -- the input size. If <= 0, don't resize | |
""" | |
img = Image.open(path).convert('RGB') | |
aus_resize = None | |
if load_size > 0: | |
aus_resize = img.size | |
transform = get_transform(load_size=load_size) | |
image = transform(img) | |
return image.unsqueeze(0), aus_resize | |
def tensor_to_img(input_image, imtype=np.uint8): | |
""""Converts a Tensor array into a numpy image array. | |
Parameters: | |
input_image (tensor) -- the input image tensor array | |
imtype (type) -- the desired type of the converted numpy array | |
""" | |
if not isinstance(input_image, np.ndarray): | |
if isinstance(input_image, torch.Tensor): # get the data from a variable | |
image_tensor = input_image.data | |
else: | |
return input_image | |
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array | |
if image_numpy.shape[0] == 1: # grayscale to RGB | |
image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling | |
else: # if it is a numpy array, do nothing | |
image_numpy = input_image | |
return image_numpy.astype(imtype) | |
def save_image(image_numpy, image_path, output_resize=None): | |
"""Save a numpy image to the disk | |
Parameters: | |
image_numpy (numpy array) -- input numpy array | |
image_path (str) -- the path of the image | |
output_resize(None or tuple) -- the output size. If None, don't resize | |
""" | |
image_pil = Image.fromarray(image_numpy) | |
if output_resize: | |
image_pil = image_pil.resize(output_resize, bic) | |
image_pil.save(image_path) | |