Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import functools | |
from scripts.hf_utils import download_file | |
class UnetGenerator(nn.Module): | |
"""Create a Unet-based generator""" | |
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): | |
"""Construct a Unet generator | |
Parameters: | |
input_nc (int) -- the number of channels in input images | |
output_nc (int) -- the number of channels in output images | |
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, | |
image of size 128x128 will become of size 1x1 # at the bottleneck | |
ngf (int) -- the number of filters in the last conv layer | |
norm_layer -- normalization layer | |
We construct the U-Net from the innermost layer to the outermost layer. | |
It is a recursive process. | |
""" | |
super(UnetGenerator, self).__init__() | |
# construct unet structure | |
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer | |
for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters | |
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) | |
# gradually reduce the number of filters from ngf * 8 to ngf | |
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | |
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | |
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) | |
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer | |
def forward(self, input): | |
"""Standard forward""" | |
return self.model(input) | |
class UnetSkipConnectionBlock(nn.Module): | |
"""Defines the Unet submodule with skip connection. | |
X -------------------identity---------------------- | |
|-- downsampling -- |submodule| -- upsampling --| | |
""" | |
def __init__(self, outer_nc, inner_nc, input_nc=None, | |
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): | |
"""Construct a Unet submodule with skip connections. | |
Parameters: | |
outer_nc (int) -- the number of filters in the outer conv layer | |
inner_nc (int) -- the number of filters in the inner conv layer | |
input_nc (int) -- the number of channels in input images/features | |
submodule (UnetSkipConnectionBlock) -- previously defined submodules | |
outermost (bool) -- if this module is the outermost module | |
innermost (bool) -- if this module is the innermost module | |
norm_layer -- normalization layer | |
use_dropout (bool) -- if use dropout layers. | |
""" | |
super(UnetSkipConnectionBlock, self).__init__() | |
self.outermost = outermost | |
if type(norm_layer) == functools.partial: | |
use_bias = norm_layer.func == nn.InstanceNorm2d | |
else: | |
use_bias = norm_layer == nn.InstanceNorm2d | |
if input_nc is None: | |
input_nc = outer_nc | |
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, | |
stride=2, padding=1, bias=use_bias) | |
downrelu = nn.LeakyReLU(0.2, True) | |
downnorm = norm_layer(inner_nc) | |
uprelu = nn.ReLU(True) | |
upnorm = norm_layer(outer_nc) | |
if outermost: | |
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, | |
kernel_size=4, stride=2, | |
padding=1) | |
down = [downconv] | |
up = [uprelu, upconv, nn.Tanh()] | |
model = down + [submodule] + up | |
elif innermost: | |
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, | |
kernel_size=4, stride=2, | |
padding=1, bias=use_bias) | |
down = [downrelu, downconv] | |
up = [uprelu, upconv, upnorm] | |
model = down + up | |
else: | |
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, | |
kernel_size=4, stride=2, | |
padding=1, bias=use_bias) | |
down = [downrelu, downconv, downnorm] | |
up = [uprelu, upconv, upnorm] | |
if use_dropout: | |
model = down + [submodule] + up + [nn.Dropout(0.5)] | |
else: | |
model = down + [submodule] + up | |
self.model = nn.Sequential(*model) | |
def forward(self, x): | |
if self.outermost: | |
return self.model(x) | |
else: # add skip connections | |
return torch.cat([x, self.model(x)], 1) | |
class Smooth(nn.Module): | |
def __init__(self): | |
super().__init__() | |
kernel = [ | |
[1, 2, 1], | |
[2, 4, 2], | |
[1, 2, 1] | |
] | |
kernel = torch.tensor([[kernel]], dtype=torch.float) | |
kernel /= kernel.sum() | |
self.register_buffer('kernel', kernel) | |
self.pad = nn.ReplicationPad2d(1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
x = x.view(-1, 1, h, w) | |
x = self.pad(x) | |
x = F.conv2d(x, self.kernel) | |
return x.view(b, c, h, w) | |
class Upsample(nn.Module): | |
def __init__(self, inc, outc, scale_factor=2): | |
super().__init__() | |
self.scale_factor = scale_factor | |
self.up = nn.Upsample(scale_factor=scale_factor, mode='bilinear') | |
self.smooth = Smooth() | |
self.conv = nn.Conv2d(inc, outc, kernel_size=3, stride=1, padding=1) | |
self.mlp = nn.Sequential( | |
nn.Conv2d(outc, 4 * outc, kernel_size=1, stride=1, padding=0), | |
nn.GELU(), | |
nn.Conv2d(4 * outc, outc, kernel_size=1, stride=1, padding=0), | |
) | |
def forward(self, x): | |
x = self.smooth(self.up(x)) | |
x = self.conv(x) | |
x = self.mlp(x) + x | |
return x | |
def create_model(model, use_local): | |
"""Create a model for anime2sketch | |
hardcoding the options for simplicity | |
""" | |
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) | |
net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False) | |
import os | |
if model == 'default': | |
model_path = "models/Anime2Sketch/netG.pth" if use_local else download_file("netG.pth", "models/Anime2Sketch") | |
ckpt = torch.load(model_path) | |
for key in list(ckpt.keys()): | |
if 'module.' in key: | |
ckpt[key.replace('module.', '')] = ckpt[key] | |
del ckpt[key] | |
net.load_state_dict(ckpt) | |
elif model == 'improved': | |
ckpt = torch.load('weights/improved.bin', map_location=torch.device('cpu')) | |
base = net.model.model[1] | |
# swap deconvolution layers with reszie + conv layers for 2x upsampling | |
for _ in range(6): | |
inc, outc = base.model[5].in_channels, base.model[5].out_channels | |
base.model[5] = Upsample(inc, outc) | |
base = base.model[3] | |
net.load_state_dict(ckpt) | |
else: | |
raise ValueError(f"model should be one of ['default', 'improved'], but got {model}") | |
return net |