File size: 15,741 Bytes
508b842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import functools

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from torch.nn import Parameter as P

from diffusers import ModelMixin
from diffusers.configuration_utils import (ConfigMixin, 
                                           register_to_config)


def proj(x, y):
   return torch.mm(y, x.t()) * y / torch.mm(y, y.t())


def gram_schmidt(x, ys):
    for y in ys:
        x = x - proj(x, y)
    return x


def power_iteration(W, u_, update=True, eps=1e-12):
    us, vs, svs = [], [], []
    for i, u in enumerate(u_):
        with torch.no_grad():
            v = torch.matmul(u, W)
            v = F.normalize(gram_schmidt(v, vs), eps=eps)
            vs += [v]
            u = torch.matmul(v, W.t())
            u = F.normalize(gram_schmidt(u, us), eps=eps)
            us += [u]
            if update:
                u_[i][:] = u
        svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
    return svs, us, vs


class LinearBlock(nn.Module):
    def __init__(
        self, 
        in_dim, 
        out_dim, 
        norm='none', 
        act='relu', 
        use_sn=False
    ):
        super(LinearBlock, self).__init__()
        use_bias = True
        self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
        if use_sn:
            self.fc = nn.utils.spectral_norm(self.fc)

        # initialize normalization
        norm_dim = out_dim
        if norm == 'bn':
            self.norm = nn.BatchNorm1d(norm_dim)
        elif norm == 'in':
            self.norm = nn.InstanceNorm1d(norm_dim)
        elif norm == 'none':
            self.norm = None
        else:
            assert 0, "Unsupported normalization: {}".format(norm)

        # initialize activation
        if act == 'relu':
            self.activation = nn.ReLU(inplace=True)
        elif act == 'lrelu':
            self.activation = nn.LeakyReLU(0.2, inplace=True)
        elif act == 'tanh':
            self.activation = nn.Tanh()
        elif act == 'none':
            self.activation = None
        else:
            assert 0, "Unsupported activation: {}".format(act)

    def forward(self, x):
        out = self.fc(x)
        if self.norm:
            out = self.norm(out)
        if self.activation:
            out = self.activation(out)
        return out


class MLP(nn.Module):
    def __init__(
        self, 
        nf_in, 
        nf_out, 
        nf_mlp, 
        num_blocks, 
        norm, 
        act, 
        use_sn =False
    ):
        super(MLP,self).__init__()
        self.model = nn.ModuleList()
        nf = nf_mlp
        self.model.append(LinearBlock(nf_in, nf, norm = norm, act = act, use_sn = use_sn))
        for _ in range((num_blocks - 2)):
            self.model.append(LinearBlock(nf, nf, norm=norm, act=act, use_sn=use_sn))
        self.model.append(LinearBlock(nf, nf_out, norm='none', act ='none', use_sn = use_sn))
        self.model = nn.Sequential(*self.model)
    
    def forward(self, x):
        return self.model(x.view(x.size(0), -1))


class SN(object):
    def __init__(
        self, 
        num_svs, 
        num_itrs, 
        num_outputs, 
        transpose=False, 
        eps=1e-12
    ):
        self.num_itrs = num_itrs
        self.num_svs = num_svs
        self.transpose = transpose
        self.eps = eps
        for i in range(self.num_svs):
            self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
            self.register_buffer('sv%d' % i, torch.ones(1))

    @property
    def u(self):
        return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]

    @property
    def sv(self):
        return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]

    def W_(self):
        W_mat = self.weight.view(self.weight.size(0), -1)
        if self.transpose:
            W_mat = W_mat.t()
        for _ in range(self.num_itrs):
            svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
        if self.training:
            with torch.no_grad():
                for i, sv in enumerate(svs):
                    self.sv[i][:] = sv
        return self.weight / svs[0]

class SNConv2d(nn.Conv2d, SN):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                padding=0, dilation=1, groups=1, bias=True,
                num_svs=1, num_itrs=1, eps=1e-12):
        nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
                        padding, dilation, groups, bias)
        SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)

    def forward(self, x):
        return F.conv2d(x, self.W_(), self.bias, self.stride,
                        self.padding, self.dilation, self.groups)

    def forward_wo_sn(self, x):
        return F.conv2d(x, self.weight, self.bias, self.stride,
                    self.padding, self.dilation, self.groups)


class SNLinear(nn.Linear, SN):
    def __init__(self, in_features, out_features, bias=True,
                num_svs=1, num_itrs=1, eps=1e-12):
        nn.Linear.__init__(self, in_features, out_features, bias)
        SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)

    def forward(self, x):
        return F.linear(x, self.W_(), self.bias)


class Attention(nn.Module):
    def __init__(
        self, 
        ch, 
        which_conv=SNConv2d, 
        name='attention'
    ):
        super(Attention, self).__init__()
        self.ch = ch
        self.which_conv = which_conv
        self.theta = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
        self.phi = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
        self.g = self.which_conv(self.ch, self.ch // 2, kernel_size=1, padding=0, bias=False)
        self.o = self.which_conv(self.ch // 2, self.ch, kernel_size=1, padding=0, bias=False)
        # Learnable gain parameter
        self.gamma = P(torch.tensor(0.), requires_grad=True)

    def forward(self, x, y=None):
        theta = self.theta(x)
        phi = F.max_pool2d(self.phi(x), [2,2])
        g = F.max_pool2d(self.g(x), [2,2])
        
        theta = theta.view(-1, self. ch // 8, x.shape[2] * x.shape[3])
        phi = phi.view(-1, self. ch // 8, x.shape[2] * x.shape[3] // 4)
        g = g.view(-1, self. ch // 2, x.shape[2] * x.shape[3] // 4)
        
        beta = F.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
        
        o = self.o(torch.bmm(g, beta.transpose(1,2)).view(-1, self.ch // 2, x.shape[2], x.shape[3]))
        return self.gamma * o + x


class DBlock(nn.Module):
    def __init__(self, in_channels, out_channels, which_conv=SNConv2d, wide=True,
                preactivation=False, activation=None, downsample=None,):
        super(DBlock, self).__init__()
        
        self.in_channels, self.out_channels = in_channels, out_channels

        self.hidden_channels = self.out_channels if wide else self.in_channels
        self.which_conv = which_conv
        self.preactivation = preactivation
        self.activation = activation
        self.downsample = downsample

        # Conv layers
        self.conv1 = self.which_conv(self.in_channels, self.hidden_channels)
        self.conv2 = self.which_conv(self.hidden_channels, self.out_channels)
        self.learnable_sc = True if (in_channels != out_channels) or downsample else False
        if self.learnable_sc:
            self.conv_sc = self.which_conv(in_channels, out_channels,
                                            kernel_size=1, padding=0)
    def shortcut(self, x):
        if self.preactivation:
            if self.learnable_sc:
                x = self.conv_sc(x)
            if self.downsample:
                x = self.downsample(x)
        else:
            if self.downsample:
                x = self.downsample(x)
            if self.learnable_sc:
                x = self.conv_sc(x)
        return x

    def forward(self, x):
        if self.preactivation:
            h = F.relu(x)
        else:
            h = x
        h = self.conv1(h)
        h = self.conv2(self.activation(h))
        if self.downsample:
            h = self.downsample(h)

        return h + self.shortcut(x)


class GBlock(nn.Module):
    def __init__(self, in_channels, out_channels,
                 which_conv=nn.Conv2d,which_bn= nn.BatchNorm2d, activation=None,
                 upsample=None):
        super(GBlock, self).__init__()

        self.in_channels, self.out_channels = in_channels, out_channels
        self.which_conv,self.which_bn =which_conv, which_bn
        self.activation = activation
        self.upsample = upsample
        # Conv layers
        self.conv1 = self.which_conv(self.in_channels, self.out_channels)
        self.conv2 = self.which_conv(self.out_channels, self.out_channels)
        self.learnable_sc = in_channels != out_channels or upsample
        if self.learnable_sc:
            self.conv_sc = self.which_conv(in_channels, out_channels,
                                           kernel_size=1, padding=0)
        # Batchnorm layers
        self.bn1 = self.which_bn(in_channels)
        self.bn2 = self.which_bn(out_channels)
        # upsample layers
        self.upsample = upsample

    
    def forward(self, x):
        h = self.activation(self.bn1(x))
        if self.upsample:
            h = self.upsample(h)
            x = self.upsample(x)
        h = self.conv1(h)
        h = self.activation(self.bn2(h))
        h = self.conv2(h)
        if self.learnable_sc:
            x = self.conv_sc(x)
        return h + x


class GBlock2(nn.Module):
    def __init__(self, in_channels, out_channels,
                which_conv=nn.Conv2d, activation=None,
                upsample=None, skip_connection = True):
        super(GBlock2, self).__init__()

        self.in_channels, self.out_channels = in_channels, out_channels
        self.which_conv = which_conv
        self.activation = activation
        self.upsample = upsample

        # Conv layers
        self.conv1 = self.which_conv(self.in_channels, self.out_channels)
        self.conv2 = self.which_conv(self.out_channels, self.out_channels)
        self.learnable_sc = in_channels != out_channels or upsample
        if self.learnable_sc:
            self.conv_sc = self.which_conv(in_channels, out_channels,
                                            kernel_size=1, padding=0)

        # upsample layers
        self.upsample = upsample
        self.skip_connection = skip_connection

    def forward(self, x):
        h = self.activation(x)
        if self.upsample:
            h = self.upsample(h)
            x = self.upsample(x)
        h = self.conv1(h)
        
        h = self.activation(h)
        h = self.conv2(h)
        
        if self.learnable_sc:
            x = self.conv_sc(x)


        if self.skip_connection:
            out = h + x
        else:
            out = h
        return out

def content_encoder_arch(ch =64,out_channel_multiplier = 1, input_nc = 3):
    arch = {}
    n=2
    arch[80] = {'in_channels':   [input_nc] + [ch*item for item in  [1,2]],
                                'out_channels' : [item * ch for item in [1,2,4]],
                                'resolution': [40,20,10]}
    arch[96] = {'in_channels':   [input_nc] + [ch*item for item in  [1,2]],
                                'out_channels' : [item * ch for item in [1,2,4]],
                                'resolution': [48,24,12]}
                                
    arch[128] = {'in_channels':   [input_nc] + [ch*item for item in  [1,2,4,8]],
                                'out_channels' : [item * ch for item in [1,2,4,8,16]],
                                'resolution': [64,32,16,8,4]}
    
    arch[256] = {'in_channels':[input_nc]+[ch*item for item in [1,2,4,8,8]],
                                'out_channels':[item*ch for item in [1,2,4,8,8,16]],
                                'resolution': [128,64,32,16,8,4]}
    return arch

class ContentEncoder(ModelMixin, ConfigMixin):

    @register_to_config
    def __init__(self, G_ch=64, G_wide=True, resolution=128, 
                 G_kernel_size=3, G_attn='64_32_16_8', n_classes=1000, 
                 num_G_SVs=1, num_G_SV_itrs=1, G_activation=nn.ReLU(inplace=False), 
                 SN_eps=1e-12, output_dim=1,  G_fp16=False, 
                 G_init='N02',  G_param='SN', nf_mlp = 512, nEmbedding = 256, input_nc = 3,output_nc = 3):
        super(ContentEncoder, self).__init__()

        self.ch = G_ch
        self.G_wide = G_wide
        self.resolution = resolution
        self.kernel_size = G_kernel_size
        self.attention = G_attn
        self.n_classes = n_classes
        self.activation = G_activation
        self.init = G_init
        self.G_param = G_param
        self.SN_eps = SN_eps
        self.fp16 = G_fp16

        if self.resolution == 96:
            self.save_featrues = [0,1,2,3,4]
        elif self.resolution == 80:
            self.save_featrues = [0,1,2,3,4]
        elif self.resolution == 128:
            self.save_featrues = [0,1,2,3,4]
        elif self.resolution == 256:
            self.save_featrues = [0,1,2,3,4,5]
        
        self.out_channel_nultipiler = 1
        self.arch = content_encoder_arch(self.ch, self.out_channel_nultipiler,input_nc)[resolution]

        if self.G_param == 'SN':
            self.which_conv = functools.partial(SNConv2d,
                                                    kernel_size=3, padding=1,
                                                    num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
                                                    eps=self.SN_eps)
            self.which_linear = functools.partial(SNLinear,
                                                    num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
                                                    eps=self.SN_eps)
        self.blocks = []
        for index in range(len(self.arch['out_channels'])):

            self.blocks += [[DBlock(in_channels=self.arch['in_channels'][index],
                                             out_channels=self.arch['out_channels'][index],
                                             which_conv=self.which_conv,
                                             wide=self.G_wide,
                                             activation=self.activation,
                                             preactivation=(index > 0),
                                             downsample=nn.AvgPool2d(2))]]

        self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
        self.init_weights()


    def init_weights(self):
        self.param_count = 0
        for module in self.modules():
            if (isinstance(module, nn.Conv2d)
                    or isinstance(module, nn.Linear)
                    or isinstance(module, nn.Embedding)):
                if self.init == 'ortho':
                    init.orthogonal_(module.weight)
                elif self.init == 'N02':
                    init.normal_(module.weight, 0, 0.02)
                elif self.init in ['glorot', 'xavier']:
                    init.xavier_uniform_(module.weight)
                else:
                    print('Init style not recognized...')
                self.param_count += sum([p.data.nelement() for p in module.parameters()])
        print('Param count for D''s initialized parameters: %d' % self.param_count)

    def forward(self,x):
        h = x
        residual_features = []
        residual_features.append(h)
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)            
            if index in self.save_featrues[:-1]:
                residual_features.append(h)        
        return h,residual_features