File size: 11,982 Bytes
508b842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint

from diffusers import ModelMixin
from diffusers.configuration_utils import (ConfigMixin, 
                                           register_to_config)
from diffusers.utils import BaseOutput, logging

from .embeddings import TimestepEmbedding, Timesteps
from .unet_blocks import (DownBlock2D,
                          UNetMidMCABlock2D,
                          UpBlock2D,
                          get_down_block,
                          get_up_block)


logger = logging.get_logger(__name__)


@dataclass
class UNetOutput(BaseOutput):
    sample: torch.FloatTensor


class UNet(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = None,
        up_block_types: Tuple[str] = None,
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 1,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: int = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
        attention_head_dim: int = 8,
        channel_attn: bool = False,
        content_encoder_downsample_size: int = 4,
        content_start_channel: int = 16,
        reduction: int = 32,
    ):
        super().__init__()

        self.content_encoder_downsample_size = content_encoder_downsample_size

        self.sample_size = sample_size
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))

        # time
        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            if i != 0: 
                content_channel = content_start_channel * (2 ** (i-1))
            else:
                content_channel = 0

            print("Load the down block ", down_block_type)
            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim,
                downsample_padding=downsample_padding,
                content_channel=content_channel,
                reduction=reduction,
                channel_attn=channel_attn,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidMCABlock2D(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            channel_attn=channel_attn,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift="default",
            cross_attention_dim=cross_attention_dim,
            attn_num_head_channels=attention_head_dim,
            resnet_groups=norm_num_groups,
            content_channel=content_start_channel*(2**(content_encoder_downsample_size - 1)),
            reduction=reduction,
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            content_channel = content_start_channel * (2 ** (content_encoder_downsample_size - i - 1))

            print("Load the up block ", up_block_type)
            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,  # larger 1 than the down block
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim,
                upblock_index=i,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.config.attention_head_dim}"
            )
        if slice_size is not None and slice_size > self.config.attention_head_dim:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.config.attention_head_dim}"
            )

        for block in self.down_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_attention_slice(slice_size)

        self.mid_block.set_attention_slice(slice_size)

        for block in self.up_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_attention_slice(slice_size)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (DownBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        content_encoder_downsample_size: int = 4,
        return_dict: bool = False,
    ) -> Union[UNetOutput, Tuple]:
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # 1. time
        timesteps = timestep   # only one time
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
        emb = self.time_embedding(t_emb)  # projection

        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for index, downsample_block in enumerate(self.down_blocks):
            if (hasattr(downsample_block, "attentions") and downsample_block.attentions is not None) or hasattr(downsample_block, "content_attentions"):
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    index=index,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)   

            down_block_res_samples += res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample, 
                emb, 
                index=content_encoder_downsample_size,
                encoder_hidden_states=encoder_hidden_states
            )

        # 5. up
        offset_out_sum = 0
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if (hasattr(upsample_block, "attentions") and upsample_block.attentions is not None) or hasattr(upsample_block, "content_attentions"):
                sample, offset_out = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    style_structure_features=encoder_hidden_states[3],
                    encoder_hidden_states=encoder_hidden_states[2],
                )
                offset_out_sum += offset_out
            else:
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )

        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if not return_dict:
            return (sample, offset_out_sum)

        return UNetOutput(sample=sample)