File size: 1,973 Bytes
508b842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from src import (ContentEncoder, 
                 StyleEncoder, 
                 UNet)


def build_unet(args):
    unet = UNet(
        sample_size=args.resolution,
        in_channels=3,
        out_channels=3,
        flip_sin_to_cos=True,
        freq_shift=0,
        down_block_types=('DownBlock2D', 
                          'MCADownBlock2D',
                          'MCADownBlock2D', 
                          'DownBlock2D'),
        up_block_types=('UpBlock2D', 
                        'StyleRSIUpBlock2D',
                        'StyleRSIUpBlock2D', 
                        'UpBlock2D'),
        block_out_channels=args.unet_channels, 
        layers_per_block=2,
        downsample_padding=1,
        mid_block_scale_factor=1,
        act_fn='silu',
        norm_num_groups=32,
        norm_eps=1e-05,
        cross_attention_dim=args.style_start_channel * 16,
        attention_head_dim=1,
        channel_attn=args.channel_attn,
        content_encoder_downsample_size=args.content_encoder_downsample_size,
        content_start_channel=args.content_start_channel,
        reduction=32)
    
    return unet


def build_style_encoder(args):
    style_image_encoder = StyleEncoder(
        G_ch=args.style_start_channel,
        resolution=args.style_image_size[0])
    print("Get CG-GAN Style Encoder!")
    return style_image_encoder


def build_content_encoder(args):
    content_image_encoder = ContentEncoder(
        G_ch=args.content_start_channel,
        resolution=args.content_image_size[0])
    print("Get CG-GAN Content Encoder!")
    return content_image_encoder


def build_ddpm_scheduler(args):
    ddpm_scheduler = DDPMScheduler(
        num_train_timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule=args.beta_scheduler,
        trained_betas=None,
        variance_type="fixed_small",
        clip_sample=True)
    return ddpm_scheduler