Spaces:
Runtime error
Runtime error
File size: 8,193 Bytes
508b842 2fc3d83 508b842 7cb87c9 508b842 7cb87c9 508b842 ef34269 508b842 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import random
import gradio as gr
from sample import (arg_parse,
sampling,
load_fontdiffuer_pipeline)
def run_fontdiffuer(source_image,
character,
reference_image,
sampling_step,
guidance_scale,
batch_size):
args.character_input = False if source_image is not None else True
args.content_character = character
args.sampling_step = sampling_step
args.guidance_scale = guidance_scale
args.batch_size = batch_size
args.seed = random.randint(0, 10000)
out_image = sampling(
args=args,
pipe=pipe,
content_image=source_image,
style_image=reference_image)
return out_image
if __name__ == '__main__':
args = arg_parse()
args.demo = True
args.ckpt_dir = 'ckpt'
args.ttf_path = 'ttf/KaiXinSongA.ttf'
args.device = 'cpu'
# load fontdiffuer pipeline
pipe = load_fontdiffuer_pipeline(args=args)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
FontDiffuser
</h1>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<a href="https://yeungchenwa.github.io/"">Zhenhua Yang</a>,
<a href="https://scholar.google.com/citations?user=6zNgcjAAAAAJ&hl=zh-CN&oi=ao"">Dezhi Peng</a>,
<a href="https://github.com/kyxscut"">Yuxin Kong</a>,
<a href="https://github.com/ZZXF11"">Yuyi Zhang</a>,
<a href="https://scholar.google.com/citations?user=IpmnLFcAAAAJ&hl=zh-CN&oi=ao"">Cong Yao</a>,
<a href="http://www.dlvc-lab.net/lianwen/Index.html"">Lianwen Jin</a>†
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<strong>South China University of Technology</strong>, Alibaba DAMO Academy
</h2>
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:blue;">arXiv</a>]
[<a href="https://yeungchenwa.github.io/fontdiffuser-homepage/" style="color:green;">Homepage</a>]
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:green;">Github</a>]
</h3>
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
1.We propose FontDiffuser, which is capable to generate unseen characters and styles, and it can be extended to the cross-lingual generation, such as Chinese to Korean.
</h2>
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
2. FontDiffuser excels in generating complex character and handling large style variation. And it achieves state-of-the-art performance.
</h2>
</div>
""")
gr.Image('figures/result_vis.png')
gr.Image('figures/demo_tips.png')
with gr.Column(scale=1):
with gr.Row():
source_image = gr.Image(width=320, label='[Option 1] Source Image', image_mode='RGB', type='pil')
reference_image = gr.Image(width=320, label='Reference Image', image_mode='RGB', type='pil')
with gr.Row():
character = gr.Textbox(value='隆', label='[Option 2] Source Character')
with gr.Row():
fontdiffuer_output_image = gr.Image(label="FontDiffuser Output Image", image_mode='RGB', type='pil')
sampling_step = gr.Slider(20, 50, value=20, step=10,
label="Sampling Step", info="The sampling step by FontDiffuser.")
guidance_scale = gr.Slider(1, 12, value=7.5, step=0.5,
label="Scale of Classifier-free Guidance",
info="The scale used for classifier-free guidance sampling")
batch_size = gr.Slider(1, 4, value=1, step=1,
label="Batch Size", info="The number of images to be sampled.")
FontDiffuser = gr.Button('Run FontDiffuser')
gr.Markdown("## <font color=#008000, size=6>Examples that You Can Choose Below⬇️</font>")
with gr.Row():
gr.Markdown("## Examples")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Example 1️⃣: Source Image and Reference Image")
gr.Markdown("### In this mode, we provide both the source image and \
the reference image for you to try our demo!")
gr.Examples(
examples=[['figures/source_imgs/source_灨.jpg', 'figures/ref_imgs/ref_籍.jpg'],
['figures/source_imgs/source_鑻.jpg', 'figures/ref_imgs/ref_鹰.jpg'],
['figures/source_imgs/source_鑫.jpg', 'figures/ref_imgs/ref_壤.jpg'],
['figures/source_imgs/source_釅.jpg', 'figures/ref_imgs/ref_雕.jpg']],
inputs=[source_image, reference_image]
)
with gr.Column(scale=1):
gr.Markdown("## Example 2️⃣: Character and Reference Image")
gr.Markdown("### In this mode, we provide the content character and the reference image \
for you to try our demo!")
gr.Examples(
examples=[['龍', 'figures/ref_imgs/ref_鷢.jpg'],
['轉', 'figures/ref_imgs/ref_鲸.jpg'],
['懭', 'figures/ref_imgs/ref_籍_1.jpg'],
['識', 'figures/ref_imgs/ref_鞣.jpg']],
inputs=[character, reference_image]
)
with gr.Column(scale=1):
gr.Markdown("## Example 3️⃣: Reference Image")
gr.Markdown("### In this mode, we provide only the reference image, \
you can upload your own source image or you choose the character above \
to try our demo!")
gr.Examples(
examples=['figures/ref_imgs/ref_闡.jpg',
'figures/ref_imgs/ref_雕.jpg',
'figures/ref_imgs/ref_豄.jpg',
'figures/ref_imgs/ref_馨.jpg',
'figures/ref_imgs/ref_鲸.jpg',
'figures/ref_imgs/ref_檀.jpg',
'figures/ref_imgs/ref_鞣.jpg',
'figures/ref_imgs/ref_穗.jpg',
'figures/ref_imgs/ref_欟.jpg',
'figures/ref_imgs/ref_籍_1.jpg',
'figures/ref_imgs/ref_鷢.jpg',
'figures/ref_imgs/ref_媚.jpg',
'figures/ref_imgs/ref_籍.jpg',
'figures/ref_imgs/ref_壤.jpg',
'figures/ref_imgs/ref_蜓.jpg',
'figures/ref_imgs/ref_鹰.jpg'],
examples_per_page=20,
inputs=reference_image
)
FontDiffuser.click(
fn=run_fontdiffuer,
inputs=[source_image,
character,
reference_image,
sampling_step,
guidance_scale,
batch_size],
outputs=fontdiffuer_output_image)
demo.launch(debug=True) |