File size: 17,017 Bytes
508b842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from typing import Optional

import torch
from torch import nn
import torch.nn.functional as F


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image.

    Parameters:
        in_channels (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
    """

    def __init__(
        self,
        in_channels: int,
        n_heads: int,
        d_head: int,
        depth: int = 1,
        dropout: float = 0.0,
        num_groups: int = 32,
        context_dim: Optional[int] = None,
    ):
        super().__init__()
        self.n_heads = n_heads
        self.d_head = d_head
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

        self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)

    def _set_attention_slice(self, slice_size):
        for block in self.transformer_blocks:
            block._set_attention_slice(slice_size)

    def forward(self, hidden_states, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
        hidden_states = self.proj_in(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)  # here change the shape torch.Size([1, 4096, 128])
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, context=context)  # hidden_states: torch.Size([1, 4096, 128])
        hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)   # torch.Size([1, 128, 64, 64])
        hidden_states = self.proj_out(hidden_states)
        return hidden_states + residual


class BasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
        gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
        checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
    """

    def __init__(
        self,
        dim: int,
        n_heads: int,
        d_head: int,
        dropout=0.0,
        context_dim: Optional[int] = None,
        gated_ff: bool = True,
        checkpoint: bool = True,
    ):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def _set_attention_slice(self, slice_size):
        self.attn1._slice_size = slice_size
        self.attn2._slice_size = slice_size

    def forward(self, hidden_states, context=None):
        hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states
        hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states   # hidden_states: torch.Size([1, 4096, 128])
        hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
        return hidden_states


class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim
        project_in = GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))

    def forward(self, hidden_states):
        return self.net(hidden_states)


class GEGLU(nn.Module):
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, hidden_states):
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
        return hidden_states * F.gelu(gate)


class CrossAttention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (:obj:`int`): The number of channels in the query.
        context_dim (:obj:`int`, *optional*):
            The number of channels in the context. If not given, defaults to `query_dim`.
        heads (:obj:`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (:obj:`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
    ):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = context_dim if context_dim is not None else query_dim

        self.scale = dim_head**-0.5
        self.heads = heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self._slice_size = None

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def forward(self, hidden_states, context=None, mask=None):
        batch_size, sequence_length, _ = hidden_states.shape

        query = self.to_q(hidden_states)
        context = context if context is not None else hidden_states
        key = self.to_k(context)
        value = self.to_v(context)

        dim = query.shape[-1]

        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)

        # TODO(PVP) - mask is currently never used. Remember to re-implement when used

        # attention, what we cannot get enough of

        if self._slice_size is None or query.shape[0] // self._slice_size == 1:
            hidden_states = self._attention(query, key, value)
        else:
            hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)

        return self.to_out(hidden_states)

    def _attention(self, query, key, value):
        # TODO: use baddbmm for better performance
        attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
        attention_probs = attention_scores.softmax(dim=-1)
        # compute attention output
        hidden_states = torch.matmul(attention_probs, value)
        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states

    def _sliced_attention(self, query, key, value, sequence_length, dim):
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
            attn_slice = (
                torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
            )  # TODO: use baddbmm for better performance
            attn_slice = attn_slice.softmax(dim=-1)
            attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states


class OffsetRefStrucInter(nn.Module):

    def __init__(
        self,
        res_in_channels: int,
        style_feat_in_channels: int,
        n_heads: int,
        num_groups: int = 32,
        dropout: float = 0.0,
        gated_ff: bool = True,
    ):  
        super().__init__()
        # style feat projecter
        self.style_proj_in = nn.Conv2d(style_feat_in_channels, style_feat_in_channels, kernel_size=1, stride=1, padding=0)
        self.gnorm_s = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True)
        self.ln_s = nn.LayerNorm(style_feat_in_channels)

        # content feat projecter
        self.content_proj_in = nn.Conv2d(res_in_channels, res_in_channels, kernel_size=1, stride=1, padding=0)
        self.gnorm_c = torch.nn.GroupNorm(num_groups=num_groups, num_channels=res_in_channels, eps=1e-6, affine=True)
        self.ln_c = nn.LayerNorm(res_in_channels)

        # cross-attention
        # dim_head is the middle dealing dimension, output dimension will be change to quert_dim by Linear
        self.cross_attention = CrossAttention(
            query_dim=style_feat_in_channels, context_dim=res_in_channels, heads=n_heads, dim_head=res_in_channels, dropout=dropout
        )

        # FFN
        self.ff = FeedForward(style_feat_in_channels, dropout=dropout, glu=gated_ff)
        self.ln_ff = nn.LayerNorm(style_feat_in_channels)

        self.gnorm_out = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True)
        self.proj_out = nn.Conv2d(style_feat_in_channels, 1*2*3*3, kernel_size=1, stride=1, padding=0)

    def forward(self, res_hidden_states, style_content_hidden_states):
        batch, c_channel, height, width = res_hidden_states.shape
        _, s_channel, _, _ = style_content_hidden_states.shape
        # style projecter
        style_content_hidden_states = self.gnorm_s(style_content_hidden_states)
        style_content_hidden_states = self.style_proj_in(style_content_hidden_states)
        
        style_content_hidden_states = style_content_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, s_channel)
        style_content_hidden_states = self.ln_s(style_content_hidden_states)

        # content projecter
        res_hidden_states = self.gnorm_c(res_hidden_states)
        res_hidden_states = self.content_proj_in(res_hidden_states)
        
        res_hidden_states = res_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, c_channel)
        res_hidden_states = self.ln_c(res_hidden_states)

        # style and content cross-attention
        hidden_states = self.cross_attention(style_content_hidden_states, context=res_hidden_states)

        # ffn
        hidden_states = self.ff(self.ln_ff(hidden_states)) + hidden_states

        # reshape
        _, _, c = hidden_states.shape
        reshape_out = hidden_states.permute(0, 2, 1).reshape(batch, c, height, width)

        # projert out
        reshape_out = self.gnorm_out(reshape_out)
        offset_out = self.proj_out(reshape_out)

        return offset_out


class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            # nn.ReLU(inplace=True),
            nn.SiLU(),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)


class Mish(torch.nn.Module):
    def forward(self, hidden_states):
        return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))


class ChannelAttnBlock(nn.Module):
    """This is the Channel Attention in MCA.
    """
    def __init__(
        self,
        in_channels,
        out_channels,
        groups=32,
        groups_out=None,
        eps=1e-6,
        non_linearity="swish",
        channel_attn=False,
        reduction=32):
        super().__init__()

        if groups_out is None:
            groups_out = groups

        self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
        self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1)

        if non_linearity == "swish":
            self.nonlinearity = lambda x: F.silu(x)
        elif non_linearity == "mish":
            self.nonlinearity = Mish()
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
        
        self.channel_attn = channel_attn
        if self.channel_attn:
            # SE Attention
            self.se_channel_attn = SELayer(channel=in_channels, reduction=reduction)

        # Down channel: Use the conv1*1 to down the channel wise
        self.norm3 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
        self.down_channel = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1) # conv1*1

    def forward(self, input, content_feature):

        concat_feature = torch.cat([input, content_feature], dim=1)
        hidden_states = concat_feature

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

        if self.channel_attn:
            hidden_states = self.se_channel_attn(hidden_states)
            hidden_states = hidden_states + concat_feature

        # Down channel
        hidden_states = self.norm3(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.down_channel(hidden_states)

        return hidden_states