Spaces:
Runtime error
Runtime error
from typing import Optional | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply | |
standard transformer action. Finally, reshape to image. | |
Parameters: | |
in_channels (:obj:`int`): The number of channels in the input and output. | |
n_heads (:obj:`int`): The number of heads to use for multi-head attention. | |
d_head (:obj:`int`): The number of channels in each head. | |
depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use. | |
context_dim (:obj:`int`, *optional*): The number of context dimensions to use. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
n_heads: int, | |
d_head: int, | |
depth: int = 1, | |
dropout: float = 0.0, | |
num_groups: int = 32, | |
context_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.n_heads = n_heads | |
self.d_head = d_head | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) | |
for d in range(depth) | |
] | |
) | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
def _set_attention_slice(self, slice_size): | |
for block in self.transformer_blocks: | |
block._set_attention_slice(slice_size) | |
def forward(self, hidden_states, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
hidden_states = self.proj_in(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) # here change the shape torch.Size([1, 4096, 128]) | |
for block in self.transformer_blocks: | |
hidden_states = block(hidden_states, context=context) # hidden_states: torch.Size([1, 4096, 128]) | |
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2) # torch.Size([1, 128, 64, 64]) | |
hidden_states = self.proj_out(hidden_states) | |
return hidden_states + residual | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (:obj:`int`): The number of channels in the input and output. | |
n_heads (:obj:`int`): The number of heads to use for multi-head attention. | |
d_head (:obj:`int`): The number of channels in each head. | |
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention. | |
gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network. | |
checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
n_heads: int, | |
d_head: int, | |
dropout=0.0, | |
context_dim: Optional[int] = None, | |
gated_ff: bool = True, | |
checkpoint: bool = True, | |
): | |
super().__init__() | |
self.attn1 = CrossAttention( | |
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is a self-attention | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = CrossAttention( | |
query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def _set_attention_slice(self, slice_size): | |
self.attn1._slice_size = slice_size | |
self.attn2._slice_size = slice_size | |
def forward(self, hidden_states, context=None): | |
hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states | |
hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states # hidden_states: torch.Size([1, 4096, 128]) | |
hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (:obj:`int`): The number of channels in the input. | |
dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation. | |
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
""" | |
def __init__( | |
self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0 | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
project_in = GEGLU(dim, inner_dim) | |
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) | |
def forward(self, hidden_states): | |
return self.net(hidden_states) | |
class GEGLU(nn.Module): | |
r""" | |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
Parameters: | |
dim_in (:obj:`int`): The number of channels in the input. | |
dim_out (:obj:`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, hidden_states): | |
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) | |
return hidden_states * F.gelu(gate) | |
class CrossAttention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (:obj:`int`): The number of channels in the query. | |
context_dim (:obj:`int`, *optional*): | |
The number of channels in the context. If not given, defaults to `query_dim`. | |
heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head. | |
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
""" | |
def __init__( | |
self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0 | |
): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = context_dim if context_dim is not None else query_dim | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self._slice_size = None | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
def reshape_heads_to_batch_dim(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
batch_size, seq_len, dim = tensor.shape | |
head_size = self.heads | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def forward(self, hidden_states, context=None, mask=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
query = self.to_q(hidden_states) | |
context = context if context is not None else hidden_states | |
key = self.to_k(context) | |
value = self.to_v(context) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
# TODO(PVP) - mask is currently never used. Remember to re-implement when used | |
# attention, what we cannot get enough of | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim) | |
return self.to_out(hidden_states) | |
def _attention(self, query, key, value): | |
# TODO: use baddbmm for better performance | |
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale | |
attention_probs = attention_scores.softmax(dim=-1) | |
# compute attention output | |
hidden_states = torch.matmul(attention_probs, value) | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
def _sliced_attention(self, query, key, value, sequence_length, dim): | |
batch_size_attention = query.shape[0] | |
hidden_states = torch.zeros( | |
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
) | |
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
for i in range(hidden_states.shape[0] // slice_size): | |
start_idx = i * slice_size | |
end_idx = (i + 1) * slice_size | |
attn_slice = ( | |
torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale | |
) # TODO: use baddbmm for better performance | |
attn_slice = attn_slice.softmax(dim=-1) | |
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx]) | |
hidden_states[start_idx:end_idx] = attn_slice | |
# reshape hidden_states | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
return hidden_states | |
class OffsetRefStrucInter(nn.Module): | |
def __init__( | |
self, | |
res_in_channels: int, | |
style_feat_in_channels: int, | |
n_heads: int, | |
num_groups: int = 32, | |
dropout: float = 0.0, | |
gated_ff: bool = True, | |
): | |
super().__init__() | |
# style feat projecter | |
self.style_proj_in = nn.Conv2d(style_feat_in_channels, style_feat_in_channels, kernel_size=1, stride=1, padding=0) | |
self.gnorm_s = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True) | |
self.ln_s = nn.LayerNorm(style_feat_in_channels) | |
# content feat projecter | |
self.content_proj_in = nn.Conv2d(res_in_channels, res_in_channels, kernel_size=1, stride=1, padding=0) | |
self.gnorm_c = torch.nn.GroupNorm(num_groups=num_groups, num_channels=res_in_channels, eps=1e-6, affine=True) | |
self.ln_c = nn.LayerNorm(res_in_channels) | |
# cross-attention | |
# dim_head is the middle dealing dimension, output dimension will be change to quert_dim by Linear | |
self.cross_attention = CrossAttention( | |
query_dim=style_feat_in_channels, context_dim=res_in_channels, heads=n_heads, dim_head=res_in_channels, dropout=dropout | |
) | |
# FFN | |
self.ff = FeedForward(style_feat_in_channels, dropout=dropout, glu=gated_ff) | |
self.ln_ff = nn.LayerNorm(style_feat_in_channels) | |
self.gnorm_out = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True) | |
self.proj_out = nn.Conv2d(style_feat_in_channels, 1*2*3*3, kernel_size=1, stride=1, padding=0) | |
def forward(self, res_hidden_states, style_content_hidden_states): | |
batch, c_channel, height, width = res_hidden_states.shape | |
_, s_channel, _, _ = style_content_hidden_states.shape | |
# style projecter | |
style_content_hidden_states = self.gnorm_s(style_content_hidden_states) | |
style_content_hidden_states = self.style_proj_in(style_content_hidden_states) | |
style_content_hidden_states = style_content_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, s_channel) | |
style_content_hidden_states = self.ln_s(style_content_hidden_states) | |
# content projecter | |
res_hidden_states = self.gnorm_c(res_hidden_states) | |
res_hidden_states = self.content_proj_in(res_hidden_states) | |
res_hidden_states = res_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, c_channel) | |
res_hidden_states = self.ln_c(res_hidden_states) | |
# style and content cross-attention | |
hidden_states = self.cross_attention(style_content_hidden_states, context=res_hidden_states) | |
# ffn | |
hidden_states = self.ff(self.ln_ff(hidden_states)) + hidden_states | |
# reshape | |
_, _, c = hidden_states.shape | |
reshape_out = hidden_states.permute(0, 2, 1).reshape(batch, c, height, width) | |
# projert out | |
reshape_out = self.gnorm_out(reshape_out) | |
offset_out = self.proj_out(reshape_out) | |
return offset_out | |
class SELayer(nn.Module): | |
def __init__(self, channel, reduction=16): | |
super().__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction, bias=False), | |
# nn.ReLU(inplace=True), | |
nn.SiLU(), | |
nn.Linear(channel // reduction, channel, bias=False), | |
nn.Sigmoid() | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
return x * y.expand_as(x) | |
class Mish(torch.nn.Module): | |
def forward(self, hidden_states): | |
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) | |
class ChannelAttnBlock(nn.Module): | |
"""This is the Channel Attention in MCA. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
groups=32, | |
groups_out=None, | |
eps=1e-6, | |
non_linearity="swish", | |
channel_attn=False, | |
reduction=32): | |
super().__init__() | |
if groups_out is None: | |
groups_out = groups | |
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1) | |
if non_linearity == "swish": | |
self.nonlinearity = lambda x: F.silu(x) | |
elif non_linearity == "mish": | |
self.nonlinearity = Mish() | |
elif non_linearity == "silu": | |
self.nonlinearity = nn.SiLU() | |
self.channel_attn = channel_attn | |
if self.channel_attn: | |
# SE Attention | |
self.se_channel_attn = SELayer(channel=in_channels, reduction=reduction) | |
# Down channel: Use the conv1*1 to down the channel wise | |
self.norm3 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.down_channel = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1) # conv1*1 | |
def forward(self, input, content_feature): | |
concat_feature = torch.cat([input, content_feature], dim=1) | |
hidden_states = concat_feature | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if self.channel_attn: | |
hidden_states = self.se_channel_attn(hidden_states) | |
hidden_states = hidden_states + concat_feature | |
# Down channel | |
hidden_states = self.norm3(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.down_channel(hidden_states) | |
return hidden_states | |