FontDiffuser-Gradio / sample.py
yeungchenwa's picture
[Update] Add files and checkpoint
508b842
import os
import cv2
import time
import random
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from accelerate.utils import set_seed
from src import (FontDiffuserDPMPipeline,
FontDiffuserModelDPM,
build_ddpm_scheduler,
build_unet,
build_content_encoder,
build_style_encoder)
from utils import (ttf2im,
load_ttf,
is_char_in_font,
save_args_to_yaml,
save_single_image,
save_image_with_content_style)
def arg_parse():
from configs.fontdiffuser import get_parser
parser = get_parser()
parser.add_argument("--ckpt_dir", type=str, default=None)
parser.add_argument("--demo", action="store_true")
parser.add_argument("--controlnet", type=bool, default=False,
help="If in demo mode, the controlnet can be added.")
parser.add_argument("--character_input", action="store_true")
parser.add_argument("--content_character", type=str, default=None)
parser.add_argument("--content_image_path", type=str, default=None)
parser.add_argument("--style_image_path", type=str, default=None)
parser.add_argument("--save_image", action="store_true")
parser.add_argument("--save_image_dir", type=str, default=None,
help="The saving directory.")
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--ttf_path", type=str, default="ttf/KaiXinSongA.ttf")
args = parser.parse_args()
style_image_size = args.style_image_size
content_image_size = args.content_image_size
args.style_image_size = (style_image_size, style_image_size)
args.content_image_size = (content_image_size, content_image_size)
return args
def image_process(args, content_image=None, style_image=None):
if not args.demo:
# Read content image and style image
if args.character_input:
assert args.content_character is not None, "The content_character should not be None."
if not is_char_in_font(font_path=args.ttf_path, char=args.content_character):
return None, None
font = load_ttf(ttf_path=args.ttf_path)
content_image = ttf2im(font=font, char=args.content_character)
content_image_pil = content_image.copy()
else:
content_image = Image.open(args.content_image_path).convert('RGB')
content_image_pil = None
style_image = Image.open(args.style_image_path).convert('RGB')
else:
assert style_image is not None, "The style image should not be None."
if args.character_input:
assert args.content_character is not None, "The content_character should not be None."
if not is_char_in_font(font_path=args.ttf_path, char=args.content_character):
return None, None
font = load_ttf(ttf_path=args.ttf_path)
content_image = ttf2im(font=font, char=args.content_character)
else:
assert content_image is not None, "The content image should not be None."
content_image_pil = None
## Dataset transform
content_inference_transforms = transforms.Compose(
[transforms.Resize(args.content_image_size, \
interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
style_inference_transforms = transforms.Compose(
[transforms.Resize(args.style_image_size, \
interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
content_image = content_inference_transforms(content_image)[None, :]
style_image = style_inference_transforms(style_image)[None, :]
return content_image, style_image, content_image_pil
def load_fontdiffuer_pipeline(args):
# Load the model state_dict
unet = build_unet(args=args)
unet.load_state_dict(torch.load(f"{args.ckpt_dir}/unet.pth"))
style_encoder = build_style_encoder(args=args)
style_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/style_encoder.pth"))
content_encoder = build_content_encoder(args=args)
content_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/content_encoder.pth"))
model = FontDiffuserModelDPM(
unet=unet,
style_encoder=style_encoder,
content_encoder=content_encoder)
model.to(args.device)
print("Loaded the model state_dict successfully!")
# Load the training ddpm_scheduler.
train_scheduler = build_ddpm_scheduler(args=args)
print("Loaded training DDPM scheduler sucessfully!")
# Load the DPM_Solver to generate the sample.
pipe = FontDiffuserDPMPipeline(
model=model,
ddpm_train_scheduler=train_scheduler,
model_type=args.model_type,
guidance_type=args.guidance_type,
guidance_scale=args.guidance_scale,
)
print("Loaded dpm_solver pipeline sucessfully!")
return pipe
def sampling(args, pipe, content_image=None, style_image=None):
if not args.demo:
os.makedirs(args.save_image_dir, exist_ok=True)
# saving sampling config
save_args_to_yaml(args=args, output_file=f"{args.save_image_dir}/sampling_config.yaml")
if args.seed:
set_seed(seed=args.seed)
content_image, style_image, content_image_pil = image_process(args=args,
content_image=content_image,
style_image=style_image)
if content_image == None:
print(f"The content_character you provided is not in the ttf. \
Please change the content_character or you can change the ttf.")
return None
with torch.no_grad():
content_image = content_image.to(args.device)
style_image = style_image.to(args.device)
print(f"Sampling by DPM-Solver++ ......")
start = time.time()
images = pipe.generate(
content_images=content_image,
style_images=style_image,
batch_size=1,
order=args.order,
num_inference_step=args.num_inference_steps,
content_encoder_downsample_size=args.content_encoder_downsample_size,
t_start=args.t_start,
t_end=args.t_end,
dm_size=args.content_image_size,
algorithm_type=args.algorithm_type,
skip_type=args.skip_type,
method=args.method,
correcting_x0_fn=args.correcting_x0_fn)
end = time.time()
if args.save_image:
print(f"Saving the image ......")
save_single_image(save_dir=args.save_image_dir, image=images[0])
if args.character_input:
save_image_with_content_style(save_dir=args.save_image_dir,
image=images[0],
content_image_pil=content_image_pil,
content_image_path=None,
style_image_path=args.style_image_path,
resolution=args.resolution)
else:
save_image_with_content_style(save_dir=args.save_image_dir,
image=images[0],
content_image_pil=None,
content_image_path=args.content_image_path,
style_image_path=args.style_image_path,
resolution=args.resolution)
print(f"Finish the sampling process, costing time {end - start}s")
return images[0]
def load_controlnet_pipeline(args,
config_path="lllyasviel/sd-controlnet-canny",
ckpt_path="runwayml/stable-diffusion-v1-5"):
from diffusers import ControlNetModel, AutoencoderKL
# load controlnet model and pipeline
from diffusers import StableDiffusionControlNetPipeline, UniPCMultistepScheduler
controlnet = ControlNetModel.from_pretrained(config_path,
torch_dtype=torch.float16,
cache_dir=f"{args.ckpt_dir}/controlnet")
print(f"Loaded ControlNet Model Successfully!")
pipe = StableDiffusionControlNetPipeline.from_pretrained(ckpt_path,
controlnet=controlnet,
torch_dtype=torch.float16,
cache_dir=f"{args.ckpt_dir}/controlnet_pipeline")
# faster
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
print(f"Loaded ControlNet Pipeline Successfully!")
return pipe
def controlnet(text_prompt,
pil_image,
pipe):
image = np.array(pil_image)
# get canny image
image = cv2.Canny(image=image, threshold1=100, threshold2=200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
seed = random.randint(0, 10000)
generator = torch.manual_seed(seed)
image = pipe(text_prompt,
num_inference_steps=50,
generator=generator,
image=canny_image,
output_type='pil').images[0]
return image
def load_instructpix2pix_pipeline(args,
ckpt_path="timbrooks/instruct-pix2pix"):
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(ckpt_path,
torch_dtype=torch.float16)
pipe.to(args.device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
return pipe
def instructpix2pix(pil_image, text_prompt, pipe):
image = pil_image.resize((512, 512))
seed = random.randint(0, 10000)
generator = torch.manual_seed(seed)
image = pipe(prompt=text_prompt, image=image, generator=generator,
num_inference_steps=20, image_guidance_scale=1.1).images[0]
return image
if __name__=="__main__":
args = arg_parse()
# load fontdiffuser pipeline
pipe = load_fontdiffuer_pipeline(args=args)
out_image = sampling(args=args, pipe=pipe)