from typing import Optional import torch from torch import nn import torch.nn.functional as F class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image. Parameters: in_channels (:obj:`int`): The number of channels in the input and output. n_heads (:obj:`int`): The number of heads to use for multi-head attention. d_head (:obj:`int`): The number of channels in each head. depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use. context_dim (:obj:`int`, *optional*): The number of context dimensions to use. """ def __init__( self, in_channels: int, n_heads: int, d_head: int, depth: int = 1, dropout: float = 0.0, num_groups: int = 32, context_dim: Optional[int] = None, ): super().__init__() self.n_heads = n_heads self.d_head = d_head self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth) ] ) self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def _set_attention_slice(self, slice_size): for block in self.transformer_blocks: block._set_attention_slice(slice_size) def forward(self, hidden_states, context=None): # note: if no context is given, cross-attention defaults to self-attention batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) # here change the shape torch.Size([1, 4096, 128]) for block in self.transformer_blocks: hidden_states = block(hidden_states, context=context) # hidden_states: torch.Size([1, 4096, 128]) hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2) # torch.Size([1, 128, 64, 64]) hidden_states = self.proj_out(hidden_states) return hidden_states + residual class BasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (:obj:`int`): The number of channels in the input and output. n_heads (:obj:`int`): The number of heads to use for multi-head attention. d_head (:obj:`int`): The number of channels in each head. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention. gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network. checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing. """ def __init__( self, dim: int, n_heads: int, d_head: int, dropout=0.0, context_dim: Optional[int] = None, gated_ff: bool = True, checkpoint: bool = True, ): super().__init__() self.attn1 = CrossAttention( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention( query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def _set_attention_slice(self, slice_size): self.attn1._slice_size = slice_size self.attn2._slice_size = slice_size def forward(self, hidden_states, context=None): hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states # hidden_states: torch.Size([1, 4096, 128]) hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states return hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (:obj:`int`): The number of channels in the input. dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0 ): super().__init__() inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim project_in = GEGLU(dim, inner_dim) self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) def forward(self, hidden_states): return self.net(hidden_states) class GEGLU(nn.Module): r""" A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim_in (:obj:`int`): The number of channels in the input. dim_out (:obj:`int`): The number of channels in the output. """ def __init__(self, dim_in: int, dim_out: int): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, hidden_states): hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) return hidden_states * F.gelu(gate) class CrossAttention(nn.Module): r""" A cross attention layer. Parameters: query_dim (:obj:`int`): The number of channels in the query. context_dim (:obj:`int`, *optional*): The number of channels in the context. If not given, defaults to `query_dim`. heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head. dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0 ): super().__init__() inner_dim = dim_head * heads context_dim = context_dim if context_dim is not None else query_dim self.scale = dim_head**-0.5 self.heads = heads # for slice_size > 0 the attention score computation # is split across the batch axis to save memory # You can set slice_size with `set_attention_slice` self._slice_size = None self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def forward(self, hidden_states, context=None, mask=None): batch_size, sequence_length, _ = hidden_states.shape query = self.to_q(hidden_states) context = context if context is not None else hidden_states key = self.to_k(context) value = self.to_v(context) dim = query.shape[-1] query = self.reshape_heads_to_batch_dim(query) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) # TODO(PVP) - mask is currently never used. Remember to re-implement when used # attention, what we cannot get enough of if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim) return self.to_out(hidden_states) def _attention(self, query, key, value): # TODO: use baddbmm for better performance attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale attention_probs = attention_scores.softmax(dim=-1) # compute attention output hidden_states = torch.matmul(attention_probs, value) # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def _sliced_attention(self, query, key, value, sequence_length, dim): batch_size_attention = query.shape[0] hidden_states = torch.zeros( (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype ) slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] for i in range(hidden_states.shape[0] // slice_size): start_idx = i * slice_size end_idx = (i + 1) * slice_size attn_slice = ( torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale ) # TODO: use baddbmm for better performance attn_slice = attn_slice.softmax(dim=-1) attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states class OffsetRefStrucInter(nn.Module): def __init__( self, res_in_channels: int, style_feat_in_channels: int, n_heads: int, num_groups: int = 32, dropout: float = 0.0, gated_ff: bool = True, ): super().__init__() # style feat projecter self.style_proj_in = nn.Conv2d(style_feat_in_channels, style_feat_in_channels, kernel_size=1, stride=1, padding=0) self.gnorm_s = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True) self.ln_s = nn.LayerNorm(style_feat_in_channels) # content feat projecter self.content_proj_in = nn.Conv2d(res_in_channels, res_in_channels, kernel_size=1, stride=1, padding=0) self.gnorm_c = torch.nn.GroupNorm(num_groups=num_groups, num_channels=res_in_channels, eps=1e-6, affine=True) self.ln_c = nn.LayerNorm(res_in_channels) # cross-attention # dim_head is the middle dealing dimension, output dimension will be change to quert_dim by Linear self.cross_attention = CrossAttention( query_dim=style_feat_in_channels, context_dim=res_in_channels, heads=n_heads, dim_head=res_in_channels, dropout=dropout ) # FFN self.ff = FeedForward(style_feat_in_channels, dropout=dropout, glu=gated_ff) self.ln_ff = nn.LayerNorm(style_feat_in_channels) self.gnorm_out = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True) self.proj_out = nn.Conv2d(style_feat_in_channels, 1*2*3*3, kernel_size=1, stride=1, padding=0) def forward(self, res_hidden_states, style_content_hidden_states): batch, c_channel, height, width = res_hidden_states.shape _, s_channel, _, _ = style_content_hidden_states.shape # style projecter style_content_hidden_states = self.gnorm_s(style_content_hidden_states) style_content_hidden_states = self.style_proj_in(style_content_hidden_states) style_content_hidden_states = style_content_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, s_channel) style_content_hidden_states = self.ln_s(style_content_hidden_states) # content projecter res_hidden_states = self.gnorm_c(res_hidden_states) res_hidden_states = self.content_proj_in(res_hidden_states) res_hidden_states = res_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, c_channel) res_hidden_states = self.ln_c(res_hidden_states) # style and content cross-attention hidden_states = self.cross_attention(style_content_hidden_states, context=res_hidden_states) # ffn hidden_states = self.ff(self.ln_ff(hidden_states)) + hidden_states # reshape _, _, c = hidden_states.shape reshape_out = hidden_states.permute(0, 2, 1).reshape(batch, c, height, width) # projert out reshape_out = self.gnorm_out(reshape_out) offset_out = self.proj_out(reshape_out) return offset_out class SELayer(nn.Module): def __init__(self, channel, reduction=16): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), # nn.ReLU(inplace=True), nn.SiLU(), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) class Mish(torch.nn.Module): def forward(self, hidden_states): return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) class ChannelAttnBlock(nn.Module): """This is the Channel Attention in MCA. """ def __init__( self, in_channels, out_channels, groups=32, groups_out=None, eps=1e-6, non_linearity="swish", channel_attn=False, reduction=32): super().__init__() if groups_out is None: groups_out = groups self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() self.channel_attn = channel_attn if self.channel_attn: # SE Attention self.se_channel_attn = SELayer(channel=in_channels, reduction=reduction) # Down channel: Use the conv1*1 to down the channel wise self.norm3 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.down_channel = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1) # conv1*1 def forward(self, input, content_feature): concat_feature = torch.cat([input, content_feature], dim=1) hidden_states = concat_feature hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv1(hidden_states) if self.channel_attn: hidden_states = self.se_channel_attn(hidden_states) hidden_states = hidden_states + concat_feature # Down channel hidden_states = self.norm3(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.down_channel(hidden_states) return hidden_states