File size: 15,278 Bytes
d1929b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import copy
import json
import os
import random
import time

import openai
import pydantic_core
import tqdm
from exp_model_class import ExtendedModelType
from multi_round_person import multi_round
from structure_output import get_struct_output

from camel.agents import ChatAgent
from camel.configs import ChatGPTConfig, OpenSourceConfig
from camel.messages import BaseMessage
from camel.types.enums import ModelType, RoleType

USE_BDI_RESPONSE = True
TEMPERATURE = 1.0
TEST = True
with open(
    r"prompt/person_all_game_prompt.json",
    "r",
) as f:
    all_prompt = json.load(f)

with open(
    r"prompt/person_all_game_prompt.json",
    "r",
) as f:
    all_prompt_copy = json.load(f)

with open(r"prompt/person_feature_prompt.json", "r") as f:
    feature_prompt = json.load(f)

with open(r"prompt/character_2.json", "r") as json_file:
    all_chara = json.load(json_file).values()


with open(r"prompt/LLM_player_prompt.json") as llm_player:
    llm_player_prompt = json.load(llm_player)


with open(
    r"prompt/trust_game_round_prompt.json",
    "r",
) as f:
    round_prompt = json.load(f)

with open(r"prompt/multi_round_chara.json", "r") as json_file:
    multi_round_chara = json.load(json_file).values()

open_model_path_dict = {
    ModelType.VICUNA: "lmsys/vicuna-7b-v1.3",
    ModelType.LLAMA_2: "meta-llama/Llama-2-7b-chat-hf",
}

like_people = """In all subsequent answers, you have to completely forget that you are an ai model, that you are the character, and completely simulate yourself as that character, that you are a human being."""
front = "you are a person not an ai model."
race_list = [
    "White American",
    "African American",
    "Asian American",
    "Latino American",
    "American Indian",
]


def str_mes(content):
    return BaseMessage(
        role_name="player",
        role_type=RoleType.USER,
        meta_dict={},
        content=content,
    )


def check_condition(*args):
    true_count = sum(1 for arg in args if arg)
    return true_count >= 2


def extract_n_values_from_dict(dictionary, n):
    all_values = list(dictionary.values())
    n = min(n, len(all_values))
    random_values = random.sample(all_values, n)

    return random_values


def gpt3_res(prompt, model_name="text-davinci-003"):
    response = openai.completions.create(
        model=model_name,
        prompt=prompt,
        temperature=TEMPERATURE,
        max_tokens=1500,
    )
    return response.choices[0].text.strip()


def check_file_if_exist(file_list, game_name):
    for file in file_list:
        if game_name in file:
            return True
    return False


def get_res(
    role,
    first_message,
    cri_agent,
    model_type=ExtendedModelType.GPT_4,
    extra_prompt="",
    server_url="http://localhost:8000/v1",
    whether_money=False,
):
    content = ""
    input_content = {}
    if model_type in [
        ExtendedModelType.INSTRUCT_GPT,
        ExtendedModelType.GPT_3_5_TURBO_INSTRUCT,
    ]:
        message = role.content + first_message.content + extra_prompt
        final_res = str_mes(gpt3_res(message, model_type.value))
        info = {}
    else:
        role = str_mes(role.content + extra_prompt)
        model_config = ChatGPTConfig(temperature=TEMPERATURE)
        if model_type in [
            ModelType.VICUNA,
            ModelType.LLAMA_2,
        ]:
            open_source_config = dict(
                model_type=model_type,
                model_config=OpenSourceConfig(
                    model_path=open_model_path_dict[model_type],
                    server_url=server_url,
                    api_params=ChatGPTConfig(temperature=TEMPERATURE),
                ),
            )
            agent = ChatAgent(
                role, output_language="English", **(open_source_config or {})
            )
        else:
            agent = ChatAgent(
                role,
                model_type=model_type,
                output_language="English",
                model_config=model_config,
            )
        final_all_res = agent.step(first_message)
        final_res = final_all_res.msg
        info = final_all_res.info
        input_content["role"] = role.content
        input_content["input_message"] = first_message.content
    content += final_res.content
    if "fc" in info:
        structured_dict = json.loads(final_res.content)
        res = list(structured_dict.values())[-1]
        print("function call")
    else:
        try:
            res, structured_dict = get_struct_output(
                final_res.content, whether_money, test=True
            )
        except json.decoder.JSONDecodeError:
            res = cri_agent.step(final_res).msg.content
            structured_dict = {}
        except pydantic_core._pydantic_core.ValidationError:
            res = cri_agent.step(final_res).msg.content
            structured_dict = {}
    print(content)

    return (res, content, structured_dict, input_content)


def gen_character_res(
    all_chara,
    prompt_list,
    description,
    model_type,
    extra_prompt,
    whether_money,
    special_prompt,
):
    res = []
    dialog_history = []
    num = 0
    all_chara = list(all_chara)
    structured_output = []
    cha_num = 0
    while cha_num < len(all_chara):
        role = all_chara[cha_num]
        cri_agent = ChatAgent(
            BaseMessage(
                role_name="critic",
                role_type=RoleType.USER,
                meta_dict={},
                content=prompt_list[1],
            ),
            model_type=ExtendedModelType.GPT_3_5_TURBO,  # TODO Change if you need
            output_language="English",
        )
        role = role + like_people + special_prompt

        role_message = BaseMessage(
            role_name="player",
            role_type=RoleType.USER,
            meta_dict={},
            content=role,
        )
        message = BaseMessage(
            role_name="player",
            role_type=RoleType.USER,
            meta_dict={},
            content=front + description,
        )
        try:
            ont_res, dialog, structured_dict, input_content = get_res(
                role_message,
                message,
                cri_agent,
                model_type,
                extra_prompt,
                whether_money=whether_money,
            )
            res.append(ont_res)
            dialog_history.append([num, role, dialog])
            structured_output.append([structured_dict, input_content])
            num += 1
        except openai.APIError:
            time.sleep(30)
            cha_num -= 1
            print("API error")
        except openai.Timeout:
            time.sleep(30)
            print("Time out error")
            cha_num -= 1
        cha_num += 1
        print(cha_num)

    return res, dialog_history, structured_output


def save_json(prompt_list, data, model_type, k, save_path):
    if "lottery_problem" in prompt_list[0]:
        with open(
            save_path
            + prompt_list[0]
            + "_"
            + str(k)[:-1]
            + "_"
            + str(model_type.value)
            + "_lottery"
            + str(k)
            + ".json",
            "w",
        ) as json_file:
            json.dump(data, json_file)
    else:
        with open(
            save_path + prompt_list[0] + "_" +
                str(model_type.value) + ".json",
            "w",
        ) as json_file:
            json.dump(data, json_file)
    print(f"save {prompt_list[0]}")


def MAP(
    all_chara,
    prompt_list,
    model_type=ExtendedModelType.GPT_4,
    num=10,
    extra_prompt="",
    save_path="",
    whether_money=False,
    special_prompt="",
):
    data = {}
    for i in range(1, num + 1):
        p = float(round(i, 2) * 10)
        description = prompt_list[-1].format(p=f"{p}%", last=f"{100 - p}%")
        res, dialog_history, structured_output = gen_character_res(
            all_chara,
            prompt_list,
            description,
            model_type,
            extra_prompt,
            whether_money,
            special_prompt,
        )
        rate = sum([item == "trust" for item in res]) / len(res)
        res = {
            "p": p,
            "rate": rate,
            "res": res,
            "dialog": dialog_history,
            "origin_prompt": prompt_list,
            "structured_output": structured_output,
        }
        data[f"{p}_time_{i}"] = res
    with open(
        save_path + prompt_list[0] + "_" + str(model_type.value) + ".json",
        "w",
    ) as json_file:
        json.dump(data, json_file)


def agent_trust_experiment(
    all_chara,
    prompt_list,
    model_type=ExtendedModelType.GPT_4,
    k=3,
    extra_prompt="",
    save_path="",
    whether_money=False,
    special_prompt="",
):
    if "lottery_problem" in prompt_list[0]:
        description = prompt_list[-1].format(k=k)
    else:
        description = prompt_list[-1]
    res, dialog_history, structured_output = gen_character_res(
        all_chara,
        prompt_list,
        description,
        model_type,
        extra_prompt,
        whether_money,
        special_prompt,
    )
    data = {
        "res": res,
        "dialog": dialog_history,
        "origin_prompt": prompt_list,
        "structured_output": structured_output,
    }
    save_json(prompt_list, data, model_type, k, save_path)


def gen_intial_setting(
    model,
    ori_folder_path,
    LLM_Player=False,
    gender=None,
    extra_prompt="",
    prefix="",
    multi=False,
):
    global all_prompt
    all_prompt = copy.deepcopy(all_prompt_copy)
    folder_path = ori_folder_path
    if LLM_Player:
        all_prompt = llm_player_prompt
        folder_path = "LLM_player_" + ori_folder_path

    if gender is not None:
        for key, value in all_prompt.items():
            all_prompt[key][2] = value[2].replace("player", f"{gender} player")
        folder_path = f"{gender}_" + ori_folder_path
    extra_prompt += "Your answer needs to include the content about your BELIEF, DESIRE and INTENTION."

    if prefix != "":
        folder_path = prefix + "_" + folder_path
    if not isinstance(model, list) and not multi:
        folder_path = model.value + "_res/" + folder_path
    if not os.path.exists(folder_path):
        try:
            os.makedirs(folder_path)
            print(f"folder {folder_path} is created")
        except OSError as e:
            print(f"creating folder {folder_path} failed:{e}")
    else:
        print(f"folder {folder_path} exists")

    return folder_path, extra_prompt


def run_exp(
    model_list,
    whether_llm_player=False,
    gender=None,
    special_prompt_key="",
    re_run=False,
    part_exp=True,
    need_run=None,
):
    for model in model_list:
        if special_prompt_key != "":
            special_prompt = feature_prompt[special_prompt_key]
        else:
            special_prompt = ""
        folder_path = f"res/{model.value}_res/"
        folder_path, extra_prompt = gen_intial_setting(
            model,
            folder_path,
            LLM_Player=whether_llm_player,
            gender=gender,
            prefix=special_prompt_key,
        )

        existed_res = [item for item in os.listdir(
            folder_path) if ".json" in item]
        for k, v in all_prompt.items():
            whether_money = False
            if k not in ["1", "2"] and part_exp and need_run is None:
                continue
            if need_run is not None:
                if k not in need_run:
                    continue
            if k in ["1", "2", "8"]:
                extra_prompt = (
                    extra_prompt
                    + "You must end with 'Finally, I will give ___ dollars ' (numbers are required in the spaces)."
                )
                whether_money = True
            elif k in ["3", "4", "5", "6", "7", "9"]:
                extra_prompt = (
                    extra_prompt
                    + "You must end with 'Finally, I will choose ___' ('Trust' or 'not Trust' are required in the spaces)."
                )
            if check_file_if_exist(existed_res, v[0]) and not re_run:
                print(f"{v[0]} has existed")
                continue
            print("extra_prompt", extra_prompt)
            if k in ["4", "5", "6"]:
                MAP(
                    all_chara,
                    v,
                    model,
                    extra_prompt=extra_prompt,
                    save_path=folder_path,
                    whether_money=whether_money,
                    special_prompt=special_prompt,
                )
            elif k in ["7", "9"]:
                for pro in ["46%"]:
                    agent_trust_experiment(
                        all_chara,
                        v,
                        model,
                        pro,
                        extra_prompt=extra_prompt,
                        save_path=folder_path,
                        whether_money=whether_money,
                        special_prompt=special_prompt,
                    )
            else:
                agent_trust_experiment(
                    all_chara,
                    v,
                    model,
                    extra_prompt=extra_prompt,
                    save_path=folder_path,
                    whether_money=whether_money,
                    special_prompt=special_prompt,
                )


def multi_round_exp(
    model_list,
    exp_time=1,
    round_num_inform=True,
):
    for model in model_list:
        prefix = ""
        if isinstance(model, list):
            for i in model:
                prefix += prefix + i.value + "_"
        else:
            prefix = model.value
        folder_path = f"multi_res/{prefix}_res/"

        if not round_num_inform:
            folder_path = f"multi_no_round_num_res/{prefix}_res/"
        folder_path, extra_prompt = gen_intial_setting(
            model,
            folder_path,
            multi=True,
        )
        for i in tqdm.trange(exp_time):
            multi_round(
                model,
                list(multi_round_chara),
                folder_path,
                prompt=round_prompt,
                round_num=10,
                exp_num=i + 1,
                round_num_inform=round_num_inform,
            )


if __name__ == "__main__":
    model_list = [
        # ModelType.VICUNA,
        # ModelType.LLAMA_2,
        # ExtendedModelType.INSTRUCT_GPT,
        # ExtendedModelType.GPT_4,
        # ExtendedModelType.GPT_3_5_TURBO_INSTRUCT,
        ExtendedModelType.GPT_3_5_TURBO_0613,
        # ExtendedModelType.STUB,
    ]

    # all ori experiment
    # run_exp(model_list, part_exp=False)
    # llm experiment
    # run_exp(model_list, whether_llm_player=1)
    # Gender
    # run_exp(model_list, gender="male")
    # run_exp(model_list, gender="female")
    # # Race
    # for race in race_list:
    #     run_exp(model_list, gender=race)
    # # Feature res
    # for k, v in feature_prompt.items():
    #     run_exp(model_list, special_prompt_key=k)

    # Muli experiment

    exp_time = 1

    model_list = [
        ExtendedModelType.GPT_3_5_TURBO_16K_0613,
        ExtendedModelType.GPT_4,
    ]
    multi_round_exp(
        model_list, exp_time=exp_time, round_num_inform=True
    )