Spaces:
Runtime error
Runtime error
Create models.py
Browse files- retinaface/models.py +301 -0
retinaface/models.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras import Model
|
3 |
+
from tensorflow.keras.applications import MobileNetV2, ResNet50
|
4 |
+
from tensorflow.keras.layers import Input, Conv2D, ReLU, LeakyReLU
|
5 |
+
from retinaface.anchor import decode_tf, prior_box_tf
|
6 |
+
|
7 |
+
|
8 |
+
def _regularizer(weights_decay):
|
9 |
+
"""l2 regularizer"""
|
10 |
+
return tf.keras.regularizers.l2(weights_decay)
|
11 |
+
|
12 |
+
|
13 |
+
def _kernel_init(scale=1.0, seed=None):
|
14 |
+
"""He normal initializer"""
|
15 |
+
return tf.keras.initializers.he_normal()
|
16 |
+
|
17 |
+
|
18 |
+
class BatchNormalization(tf.keras.layers.BatchNormalization):
|
19 |
+
"""Make trainable=False freeze BN for real (the og version is sad).
|
20 |
+
ref: https://github.com/zzh8829/yolov3-tf2
|
21 |
+
"""
|
22 |
+
def __init__(self, axis=-1, momentum=0.9, epsilon=1e-5, center=True,
|
23 |
+
scale=True, name=None, **kwargs):
|
24 |
+
super(BatchNormalization, self).__init__(
|
25 |
+
axis=axis, momentum=momentum, epsilon=epsilon, center=center,
|
26 |
+
scale=scale, name=name, **kwargs)
|
27 |
+
|
28 |
+
def call(self, x, training=False):
|
29 |
+
if training is None:
|
30 |
+
training = tf.constant(False)
|
31 |
+
training = tf.logical_and(training, self.trainable)
|
32 |
+
|
33 |
+
return super().call(x, training)
|
34 |
+
|
35 |
+
|
36 |
+
def Backbone(backbone_type='ResNet50', use_pretrain=True):
|
37 |
+
"""Backbone Model"""
|
38 |
+
weights = None
|
39 |
+
if use_pretrain:
|
40 |
+
weights = 'imagenet'
|
41 |
+
|
42 |
+
def backbone(x):
|
43 |
+
if backbone_type == 'ResNet50':
|
44 |
+
extractor = ResNet50(
|
45 |
+
input_shape=x.shape[1:], include_top=False, weights=weights)
|
46 |
+
pick_layer1 = 80 # [80, 80, 512]
|
47 |
+
pick_layer2 = 142 # [40, 40, 1024]
|
48 |
+
pick_layer3 = 174 # [20, 20, 2048]
|
49 |
+
preprocess = tf.keras.applications.resnet.preprocess_input
|
50 |
+
elif backbone_type == 'MobileNetV2':
|
51 |
+
extractor = MobileNetV2(
|
52 |
+
input_shape=x.shape[1:], include_top=False, weights=weights)
|
53 |
+
pick_layer1 = 54 # [80, 80, 32]
|
54 |
+
pick_layer2 = 116 # [40, 40, 96]
|
55 |
+
pick_layer3 = 143 # [20, 20, 160]
|
56 |
+
preprocess = tf.keras.applications.mobilenet_v2.preprocess_input
|
57 |
+
else:
|
58 |
+
raise NotImplementedError(
|
59 |
+
'Backbone type {} is not recognized.'.format(backbone_type))
|
60 |
+
|
61 |
+
return Model(extractor.input,
|
62 |
+
(extractor.layers[pick_layer1].output,
|
63 |
+
extractor.layers[pick_layer2].output,
|
64 |
+
extractor.layers[pick_layer3].output),
|
65 |
+
name=backbone_type + '_extrator')(preprocess(x))
|
66 |
+
|
67 |
+
return backbone
|
68 |
+
|
69 |
+
|
70 |
+
class ConvUnit(tf.keras.layers.Layer):
|
71 |
+
"""Conv + BN + Act"""
|
72 |
+
def __init__(self, f, k, s, wd, act=None, **kwargs):
|
73 |
+
super(ConvUnit, self).__init__(**kwargs)
|
74 |
+
self.conv = Conv2D(filters=f, kernel_size=k, strides=s, padding='same',
|
75 |
+
kernel_initializer=_kernel_init(),
|
76 |
+
kernel_regularizer=_regularizer(wd),
|
77 |
+
use_bias=False)
|
78 |
+
self.bn = BatchNormalization()
|
79 |
+
|
80 |
+
if act is None:
|
81 |
+
self.act_fn = tf.identity
|
82 |
+
elif act == 'relu':
|
83 |
+
self.act_fn = ReLU()
|
84 |
+
elif act == 'lrelu':
|
85 |
+
self.act_fn = LeakyReLU(0.1)
|
86 |
+
else:
|
87 |
+
raise NotImplementedError(
|
88 |
+
'Activation function type {} is not recognized.'.format(act))
|
89 |
+
|
90 |
+
def call(self, x):
|
91 |
+
return self.act_fn(self.bn(self.conv(x)))
|
92 |
+
|
93 |
+
|
94 |
+
class FPN(tf.keras.layers.Layer):
|
95 |
+
"""Feature Pyramid Network"""
|
96 |
+
def __init__(self, out_ch, wd, **kwargs):
|
97 |
+
super(FPN, self).__init__(**kwargs)
|
98 |
+
act = 'relu'
|
99 |
+
self.out_ch = out_ch
|
100 |
+
self.wd = wd
|
101 |
+
if (out_ch <= 64):
|
102 |
+
act = 'lrelu'
|
103 |
+
|
104 |
+
self.output1 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
105 |
+
self.output2 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
106 |
+
self.output3 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
107 |
+
self.merge1 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
|
108 |
+
self.merge2 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
|
109 |
+
|
110 |
+
def call(self, x):
|
111 |
+
output1 = self.output1(x[0]) # [80, 80, out_ch]
|
112 |
+
output2 = self.output2(x[1]) # [40, 40, out_ch]
|
113 |
+
output3 = self.output3(x[2]) # [20, 20, out_ch]
|
114 |
+
|
115 |
+
up_h, up_w = tf.shape(output2)[1], tf.shape(output2)[2]
|
116 |
+
up3 = tf.image.resize(output3, [up_h, up_w], method='nearest')
|
117 |
+
output2 = output2 + up3
|
118 |
+
output2 = self.merge2(output2)
|
119 |
+
|
120 |
+
up_h, up_w = tf.shape(output1)[1], tf.shape(output1)[2]
|
121 |
+
up2 = tf.image.resize(output2, [up_h, up_w], method='nearest')
|
122 |
+
output1 = output1 + up2
|
123 |
+
output1 = self.merge1(output1)
|
124 |
+
|
125 |
+
return output1, output2, output3
|
126 |
+
|
127 |
+
def get_config(self):
|
128 |
+
config = {
|
129 |
+
'out_ch': self.out_ch,
|
130 |
+
'wd': self.wd,
|
131 |
+
}
|
132 |
+
base_config = super(FPN, self).get_config()
|
133 |
+
return dict(list(base_config.items()) + list(config.items()))
|
134 |
+
|
135 |
+
|
136 |
+
class SSH(tf.keras.layers.Layer):
|
137 |
+
"""Single Stage Headless Layer"""
|
138 |
+
def __init__(self, out_ch, wd, **kwargs):
|
139 |
+
super(SSH, self).__init__(**kwargs)
|
140 |
+
assert out_ch % 4 == 0
|
141 |
+
self.out_ch = out_ch
|
142 |
+
self.wd = wd
|
143 |
+
act = 'relu'
|
144 |
+
if (out_ch <= 64):
|
145 |
+
act = 'lrelu'
|
146 |
+
|
147 |
+
self.conv_3x3 = ConvUnit(f=out_ch // 2, k=3, s=1, wd=wd, act=None)
|
148 |
+
|
149 |
+
self.conv_5x5_1 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
|
150 |
+
self.conv_5x5_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)
|
151 |
+
|
152 |
+
self.conv_7x7_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
|
153 |
+
self.conv_7x7_3 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)
|
154 |
+
|
155 |
+
self.relu = ReLU()
|
156 |
+
|
157 |
+
def call(self, x):
|
158 |
+
conv_3x3 = self.conv_3x3(x)
|
159 |
+
|
160 |
+
conv_5x5_1 = self.conv_5x5_1(x)
|
161 |
+
conv_5x5 = self.conv_5x5_2(conv_5x5_1)
|
162 |
+
|
163 |
+
conv_7x7_2 = self.conv_7x7_2(conv_5x5_1)
|
164 |
+
conv_7x7 = self.conv_7x7_3(conv_7x7_2)
|
165 |
+
|
166 |
+
output = tf.concat([conv_3x3, conv_5x5, conv_7x7], axis=3)
|
167 |
+
output = self.relu(output)
|
168 |
+
|
169 |
+
return output
|
170 |
+
|
171 |
+
def get_config(self):
|
172 |
+
config = {
|
173 |
+
'out_ch': self.out_ch,
|
174 |
+
'wd': self.wd,
|
175 |
+
}
|
176 |
+
base_config = super(SSH, self).get_config()
|
177 |
+
return dict(list(base_config.items()) + list(config.items()))
|
178 |
+
|
179 |
+
|
180 |
+
class BboxHead(tf.keras.layers.Layer):
|
181 |
+
"""Bbox Head Layer"""
|
182 |
+
def __init__(self, num_anchor, wd, **kwargs):
|
183 |
+
super(BboxHead, self).__init__(**kwargs)
|
184 |
+
self.num_anchor = num_anchor
|
185 |
+
self.wd = wd
|
186 |
+
self.conv = Conv2D(filters=num_anchor * 4, kernel_size=1, strides=1)
|
187 |
+
|
188 |
+
def call(self, x):
|
189 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
190 |
+
x = self.conv(x)
|
191 |
+
|
192 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 4])
|
193 |
+
|
194 |
+
def get_config(self):
|
195 |
+
config = {
|
196 |
+
'num_anchor': self.num_anchor,
|
197 |
+
'wd': self.wd,
|
198 |
+
}
|
199 |
+
base_config = super(BboxHead, self).get_config()
|
200 |
+
return dict(list(base_config.items()) + list(config.items()))
|
201 |
+
|
202 |
+
|
203 |
+
class LandmarkHead(tf.keras.layers.Layer):
|
204 |
+
"""Landmark Head Layer"""
|
205 |
+
def __init__(self, num_anchor, wd, name='LandmarkHead', **kwargs):
|
206 |
+
super(LandmarkHead, self).__init__(name=name, **kwargs)
|
207 |
+
self.num_anchor = num_anchor
|
208 |
+
self.wd = wd
|
209 |
+
self.conv = Conv2D(filters=num_anchor * 10, kernel_size=1, strides=1)
|
210 |
+
|
211 |
+
def call(self, x):
|
212 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
213 |
+
x = self.conv(x)
|
214 |
+
|
215 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 10])
|
216 |
+
|
217 |
+
def get_config(self):
|
218 |
+
config = {
|
219 |
+
'num_anchor': self.num_anchor,
|
220 |
+
'wd': self.wd,
|
221 |
+
}
|
222 |
+
base_config = super(LandmarkHead, self).get_config()
|
223 |
+
return dict(list(base_config.items()) + list(config.items()))
|
224 |
+
|
225 |
+
|
226 |
+
class ClassHead(tf.keras.layers.Layer):
|
227 |
+
"""Class Head Layer"""
|
228 |
+
def __init__(self, num_anchor, wd, name='ClassHead', **kwargs):
|
229 |
+
super(ClassHead, self).__init__(name=name, **kwargs)
|
230 |
+
self.num_anchor = num_anchor
|
231 |
+
self.wd = wd
|
232 |
+
self.conv = Conv2D(filters=num_anchor * 2, kernel_size=1, strides=1)
|
233 |
+
|
234 |
+
def call(self, x):
|
235 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
236 |
+
x = self.conv(x)
|
237 |
+
|
238 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 2])
|
239 |
+
|
240 |
+
def get_config(self):
|
241 |
+
config = {
|
242 |
+
'num_anchor': self.num_anchor,
|
243 |
+
'wd': self.wd,
|
244 |
+
}
|
245 |
+
base_config = super(ClassHead, self).get_config()
|
246 |
+
return dict(list(base_config.items()) + list(config.items()))
|
247 |
+
|
248 |
+
|
249 |
+
def RetinaFaceModel(cfg, training=False, iou_th=0.4, score_th=0.02,
|
250 |
+
name='RetinaFaceModel'):
|
251 |
+
"""Retina Face Model"""
|
252 |
+
input_size = cfg['input_size'] if training else None
|
253 |
+
wd = cfg['weights_decay']
|
254 |
+
out_ch = cfg['out_channel']
|
255 |
+
num_anchor = len(cfg['min_sizes'][0])
|
256 |
+
backbone_type = cfg['backbone_type']
|
257 |
+
|
258 |
+
# define model
|
259 |
+
x = inputs = Input([input_size, input_size, 3], name='input_image')
|
260 |
+
|
261 |
+
x = Backbone(backbone_type=backbone_type)(x)
|
262 |
+
|
263 |
+
fpn = FPN(out_ch=out_ch, wd=wd)(x)
|
264 |
+
|
265 |
+
features = [SSH(out_ch=out_ch, wd=wd)(f)
|
266 |
+
for i, f in enumerate(fpn)]
|
267 |
+
|
268 |
+
bbox_regressions = tf.concat(
|
269 |
+
[BboxHead(num_anchor, wd=wd)(f)
|
270 |
+
for i, f in enumerate(features)], axis=1)
|
271 |
+
landm_regressions = tf.concat(
|
272 |
+
[LandmarkHead(num_anchor, wd=wd, name=f'LandmarkHead_{i}')(f)
|
273 |
+
for i, f in enumerate(features)], axis=1)
|
274 |
+
classifications = tf.concat(
|
275 |
+
[ClassHead(num_anchor, wd=wd, name=f'ClassHead_{i}')(f)
|
276 |
+
for i, f in enumerate(features)], axis=1)
|
277 |
+
|
278 |
+
classifications = tf.keras.layers.Softmax(axis=-1)(classifications)
|
279 |
+
|
280 |
+
if training:
|
281 |
+
out = (bbox_regressions, landm_regressions, classifications)
|
282 |
+
else:
|
283 |
+
# only for batch size 1
|
284 |
+
preds = tf.concat( # [bboxes, landms, landms_valid, conf]
|
285 |
+
[bbox_regressions[0],
|
286 |
+
landm_regressions[0],
|
287 |
+
tf.ones_like(classifications[0, :, 0][..., tf.newaxis]),
|
288 |
+
classifications[0, :, 1][..., tf.newaxis]], 1)
|
289 |
+
priors = prior_box_tf((tf.shape(inputs)[1], tf.shape(inputs)[2]), cfg['min_sizes'], cfg['steps'], cfg['clip'])
|
290 |
+
decode_preds = decode_tf(preds, priors, cfg['variances'])
|
291 |
+
|
292 |
+
selected_indices = tf.image.non_max_suppression(
|
293 |
+
boxes=decode_preds[:, :4],
|
294 |
+
scores=decode_preds[:, -1],
|
295 |
+
max_output_size=tf.shape(decode_preds)[0],
|
296 |
+
iou_threshold=iou_th,
|
297 |
+
score_threshold=score_th)
|
298 |
+
|
299 |
+
out = tf.gather(decode_preds, selected_indices)
|
300 |
+
|
301 |
+
return Model(inputs, out, name=name), Model(inputs, [bbox_regressions, landm_regressions, classifications], name=name + '_bb_only')
|