Spaces:
Runtime error
Runtime error
File size: 11,216 Bytes
95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel
from lavis.models.blip2_models.blip2 import (
# Blip2Base,
disabled_train,
)
from model.blip2 import Blip2Base
from transformers import LlamaTokenizer
from model.modeling_llama import LlamaForCausalLM
llama_model_list = [
"decapoda-research/llama-13b-hf",
"decapoda-research/llama-7b-hf",
]
def mask_by_len(input, lens, fill_value=0):
'''
input: shape = [N, D]
lens: shape = [N]
'''
mask = torch.arange(input.shape[1], device=input.device).reshape(1, -1)
mask = mask < lens.reshape(-1, 1)
input[mask] = fill_value
return input
# @registry.register_model("blip2")
# @registry.register_model("blip2_feature_extractor")
class Blip2Llama(Blip2Base):
"""
BLIP2 first-stage model with Q-former and ViT.
Supported model types:
- pretrained: pretrained model with vit-g
- pretrain_vitL: pretrained model with vit-large
- coco: fintuned model on coco
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2", "pretrain")
"""
def __init__(
self,
bert_name,
gin_num_layers,
gin_hidden_dim,
gin_drop_ratio,
tune_gnn=False,
num_query_token=32,
cross_attention_freq=2,
lora_tuning=False,
peft_dir='',
llm_model="decapoda-research/llama-7b-hf",
prompt="",
args=None,
):
super().__init__()
self.graph_encoder, self.ln_graph = self.init_graph_encoder(gin_num_layers, gin_hidden_dim, gin_drop_ratio)
self.tune_gnn = tune_gnn
if not tune_gnn:
for name, param in self.graph_encoder.named_parameters():
param.requires_grad = False
self.graph_encoder = self.graph_encoder.eval()
self.graph_encoder.train = disabled_train
logging.info("freeze graph encoder")
self.Qformer, self.query_tokens = self.init_Qformer(bert_name, num_query_token, self.graph_encoder.num_features, cross_attention_freq)
### remove the unused parameters
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
## initialize opt model
self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, padding_side='right')
self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.llm_tokenizer.add_special_tokens({'bos_token': '</s>'})
self.llm_tokenizer.add_special_tokens({'eos_token': '</s>'})
self.llm_tokenizer.add_special_tokens({'unk_token': '</s>'})
self.llm_model = LlamaForCausalLM.from_pretrained(llm_model, torch_dtype=torch.bfloat16)
# self.llm_model = LlamaForCausalLM.from_pretrained(llm_model)
self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
self.lora_tuning = lora_tuning
if lora_tuning:
if peft_dir:
self.llm_model = PeftModel.from_pretrained(self.llm_model, peft_dir, is_trainable=True)
else:
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
self.llm_model = get_peft_model(self.llm_model, peft_config)
self.llm_model.print_trainable_parameters()
else:
for name, param in self.llm_model.named_parameters():
param.requires_grad = False
## fixme: this is different from the original BLIP2
self.eos_token_id = self.llm_tokenizer(
"\n", add_special_tokens=False
).input_ids[0]
self.pad_token_id = self.llm_tokenizer.pad_token_id
self.llm_proj = nn.Linear(
self.Qformer.config.hidden_size, self.llm_model.config.hidden_size
)
## fixme: no prompt yet
self.prompt = prompt
# prompt_tokens = self.opt_tokenizer(self.prompt, return_tensors="pt")
# self.prompt_length = prompt_tokens.attention_mask.sum(1)
def forward(self, batch):
graphs, text_tokens, prompt_lens = batch
graph_embeds, graph_masks = self.graph_encoder(graphs)
if not self.tune_gnn:
graph_embeds = graph_embeds.detach()
graph_embeds = self.ln_graph(graph_embeds, graph_masks)
device = graph_embeds.device
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=graph_embeds,
encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct
return_dict=True,
)
inputs_llm = self.llm_proj(query_output.last_hidden_state)
atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(device)
targets = text_tokens.input_ids.masked_fill(
text_tokens.input_ids == self.llm_tokenizer.pad_token_id, -100
)
if self.prompt:
targets = mask_by_len(targets, prompt_lens, -100) # do not apply loss to the prompt
# targets[:, : self.prompt_length] = -100 # do not apply loss to the prompt
empty_targets = (
torch.ones(atts_llm.size(), dtype=torch.long).to(device).fill_(-100)
)
targets = torch.cat([empty_targets, targets], dim=1)
# if self.lora_tuning:
# inputs_embeds = self.llm_model.model.get_decoder().embed_tokens(text_tokens.input_ids)
# else:
# inputs_embeds = self.llm_model.model.decoder.embed_tokens(text_tokens.input_ids)
inputs_embeds = self.llm_model.get_input_embeddings()(text_tokens.input_ids)
inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_llm, text_tokens.attention_mask], dim=1)
outputs = self.llm_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
# use_cache=False,
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
samples,
do_sample=False,
num_beams=5,
max_length=128,
min_length=1,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=1.0,
num_captions=1,
temperature=1,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
graphs = samples['graphs']
prompt_tokens = samples['prompt_tokens']
# prompt_lens = samples['prompt_lens']
with self.maybe_autocast():
graph_embeds, graph_masks = self.graph_encoder(graphs)
graph_embeds = self.ln_graph(graph_embeds)
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=graph_embeds,
encoder_attention_mask=graph_masks,
return_dict=True,
)
device = graph_embeds.device
inputs_llm = self.llm_proj(query_output.last_hidden_state)
atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long, device=device)
attention_mask = torch.cat([atts_llm, prompt_tokens.attention_mask], dim=1)
if False:
if do_sample:
query_embeds = inputs_llm.repeat_interleave(num_captions, dim=0)
num_beams = 1
else:
query_embeds = inputs_llm.repeat_interleave(num_beams, dim=0)
outputs = self.llm_model.generate(
input_ids=prompt_tokens.input_ids,
query_embeds=query_embeds,
attention_mask=attention_mask,
do_sample=do_sample,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_new_tokens=max_length,
min_length=min_length,
eos_token_id=self.eos_token_id,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
)
prompt_length = prompt_tokens.input_ids.shape[1]
output_text = self.opt_tokenizer.batch_decode(
outputs[:, prompt_length:], skip_special_tokens=True
)
else:
inputs_embeds = self.llm_model.get_input_embeddings()(prompt_tokens.input_ids)
inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_llm, prompt_tokens.attention_mask], dim=1)
outputs = self.llm_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
do_sample=do_sample,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_length=max_length,
min_length=min_length,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
# use_cache=False,
)
# outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id)
output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True)
output_text = [text.strip() for text in output_text]
return output_text |