File size: 11,216 Bytes
95f97c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel

from lavis.models.blip2_models.blip2 import (
    # Blip2Base,
    disabled_train,
)
from model.blip2 import Blip2Base
from transformers import LlamaTokenizer
from model.modeling_llama import LlamaForCausalLM


 
llama_model_list = [
    "decapoda-research/llama-13b-hf",
    "decapoda-research/llama-7b-hf",
]

def mask_by_len(input, lens, fill_value=0):
    '''
    input: shape = [N, D]
    lens: shape = [N]
    '''
    mask = torch.arange(input.shape[1], device=input.device).reshape(1, -1)
    mask = mask < lens.reshape(-1, 1)
    input[mask] = fill_value
    return input

# @registry.register_model("blip2")
# @registry.register_model("blip2_feature_extractor")
class Blip2Llama(Blip2Base):
    """
    BLIP2 first-stage model with Q-former and ViT.
    Supported model types:
        - pretrained: pretrained model with vit-g
        - pretrain_vitL: pretrained model with vit-large
        - coco: fintuned model on coco
    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("blip2", "pretrain")
    """
    def __init__(
        self,
        bert_name,
        gin_num_layers,
        gin_hidden_dim,
        gin_drop_ratio,
        tune_gnn=False,
        num_query_token=32,
        cross_attention_freq=2,
        lora_tuning=False,
        peft_dir='',
        llm_model="decapoda-research/llama-7b-hf",
        prompt="",
        args=None,
    ):
        super().__init__()
        self.graph_encoder, self.ln_graph = self.init_graph_encoder(gin_num_layers, gin_hidden_dim, gin_drop_ratio)
        self.tune_gnn = tune_gnn
        if not tune_gnn:
            for name, param in self.graph_encoder.named_parameters():
                param.requires_grad = False
            self.graph_encoder = self.graph_encoder.eval()
            self.graph_encoder.train = disabled_train
            logging.info("freeze graph encoder")
        
        self.Qformer, self.query_tokens = self.init_Qformer(bert_name, num_query_token, self.graph_encoder.num_features, cross_attention_freq)
        ### remove the unused parameters
        self.Qformer.cls = None
        self.Qformer.bert.embeddings.word_embeddings = None
        self.Qformer.bert.embeddings.position_embeddings = None
        for layer in self.Qformer.bert.encoder.layer:
            layer.output = None
            layer.intermediate = None

        ## initialize opt model
        self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, padding_side='right')
        self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.llm_tokenizer.add_special_tokens({'bos_token': '</s>'})
        self.llm_tokenizer.add_special_tokens({'eos_token': '</s>'})
        self.llm_tokenizer.add_special_tokens({'unk_token': '</s>'})
        self.llm_model = LlamaForCausalLM.from_pretrained(llm_model, torch_dtype=torch.bfloat16)
        # self.llm_model = LlamaForCausalLM.from_pretrained(llm_model)
        self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
        
        self.lora_tuning = lora_tuning
        if lora_tuning:
            if peft_dir:
                self.llm_model = PeftModel.from_pretrained(self.llm_model, peft_dir, is_trainable=True)
            else:
                peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
                self.llm_model = get_peft_model(self.llm_model, peft_config)
                self.llm_model.print_trainable_parameters()
        else:
            for name, param in self.llm_model.named_parameters():
                param.requires_grad = False

        ## fixme: this is different from the original BLIP2
        self.eos_token_id = self.llm_tokenizer(
            "\n", add_special_tokens=False
        ).input_ids[0]
        self.pad_token_id = self.llm_tokenizer.pad_token_id

        self.llm_proj = nn.Linear(
            self.Qformer.config.hidden_size, self.llm_model.config.hidden_size
        )
        
        ## fixme: no prompt yet
        self.prompt = prompt
        # prompt_tokens = self.opt_tokenizer(self.prompt, return_tensors="pt")
        # self.prompt_length = prompt_tokens.attention_mask.sum(1)

    def forward(self, batch):
        graphs, text_tokens, prompt_lens = batch
        graph_embeds, graph_masks = self.graph_encoder(graphs)
        if not self.tune_gnn:
            graph_embeds = graph_embeds.detach()
        graph_embeds = self.ln_graph(graph_embeds, graph_masks)
        device = graph_embeds.device
        query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
        query_output = self.Qformer.bert(
            query_embeds=query_tokens,
            encoder_hidden_states=graph_embeds,
            encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct
            return_dict=True,
        )
        inputs_llm = self.llm_proj(query_output.last_hidden_state)
        atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long).to(device)
        targets = text_tokens.input_ids.masked_fill(
            text_tokens.input_ids == self.llm_tokenizer.pad_token_id, -100
        )
        if self.prompt:
            targets = mask_by_len(targets, prompt_lens, -100) # do not apply loss to the prompt
            # targets[:, : self.prompt_length] = -100  # do not apply loss to the prompt
        
        empty_targets = (
            torch.ones(atts_llm.size(), dtype=torch.long).to(device).fill_(-100)
        )
        targets = torch.cat([empty_targets, targets], dim=1)
        # if self.lora_tuning:
        #     inputs_embeds = self.llm_model.model.get_decoder().embed_tokens(text_tokens.input_ids)
        # else:
        #     inputs_embeds = self.llm_model.model.decoder.embed_tokens(text_tokens.input_ids)
        inputs_embeds = self.llm_model.get_input_embeddings()(text_tokens.input_ids)
        inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
        attention_mask = torch.cat([atts_llm, text_tokens.attention_mask], dim=1)

        outputs = self.llm_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            return_dict=True,
            labels=targets,
            # use_cache=False,
        )
        loss = outputs.loss
        return {"loss": loss}

    @torch.no_grad()
    def generate(
        self,
        samples,
        do_sample=False,
        num_beams=5,
        max_length=128,
        min_length=1,
        top_p=0.9,
        repetition_penalty=1.0,
        length_penalty=1.0,
        num_captions=1,
        temperature=1,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
            num_beams (int): Number of beams for beam search. 1 means no beam search.
            max_length (int): The maximum length of the sequence to be generated.
            min_length (int): The minimum length of the sequence to be generated.
            top_p (float): The cumulative probability for nucleus sampling.
            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
            num_captions (int): Number of captions to be generated for each image.
        Returns:
            captions (list): A list of strings of length batch_size * num_captions.
        """
        graphs = samples['graphs']
        prompt_tokens = samples['prompt_tokens']
        # prompt_lens = samples['prompt_lens']
        with self.maybe_autocast():
            graph_embeds, graph_masks = self.graph_encoder(graphs)
            graph_embeds = self.ln_graph(graph_embeds)

            query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=graph_embeds,
                encoder_attention_mask=graph_masks,
                return_dict=True,
            )

            device = graph_embeds.device
            inputs_llm = self.llm_proj(query_output.last_hidden_state)
            atts_llm = torch.ones(inputs_llm.size()[:-1], dtype=torch.long, device=device)

            attention_mask = torch.cat([atts_llm, prompt_tokens.attention_mask], dim=1)
            
            if False:
                if do_sample:
                    query_embeds = inputs_llm.repeat_interleave(num_captions, dim=0)
                    num_beams = 1
                else:
                    query_embeds = inputs_llm.repeat_interleave(num_beams, dim=0)

                outputs = self.llm_model.generate(
                    input_ids=prompt_tokens.input_ids,
                    query_embeds=query_embeds,
                    attention_mask=attention_mask,
                    do_sample=do_sample,
                    top_p=top_p,
                    temperature=temperature,
                    num_beams=num_beams,
                    max_new_tokens=max_length,
                    min_length=min_length,
                    eos_token_id=self.eos_token_id,
                    repetition_penalty=repetition_penalty,
                    length_penalty=length_penalty,
                    num_return_sequences=num_captions,
                )

                prompt_length = prompt_tokens.input_ids.shape[1]
                output_text = self.opt_tokenizer.batch_decode(
                    outputs[:, prompt_length:], skip_special_tokens=True
                )
            else:
                inputs_embeds = self.llm_model.get_input_embeddings()(prompt_tokens.input_ids)
                inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
                attention_mask = torch.cat([atts_llm, prompt_tokens.attention_mask], dim=1)

                outputs = self.llm_model.generate(
                    inputs_embeds=inputs_embeds,
                    attention_mask=attention_mask,
                    do_sample=do_sample,
                    top_p=top_p,
                    temperature=temperature,
                    num_beams=num_beams,
                    max_length=max_length,
                    min_length=min_length,
                    pad_token_id=self.pad_token_id,
                    eos_token_id=self.eos_token_id,
                    repetition_penalty=repetition_penalty,
                    length_penalty=length_penalty,
                    num_return_sequences=num_captions,
                    # use_cache=False,
                )
                # outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id)
                output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True)
            output_text = [text.strip() for text in output_text]
            return output_text