Spaces:
Runtime error
Runtime error
File size: 16,080 Bytes
95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss
from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel
from ogb.utils import smiles2graph
from torch_geometric.loader.dataloader import Collater
from torch_geometric.data import Data
import numpy as np
from lavis.models.blip2_models.blip2 import (
# Blip2Base,
disabled_train,
)
from model.blip2 import Blip2Base
from model.help_funcs import get_not_allowed_tokens_ids
from transformers import AutoTokenizer
from transformers import OPTForCausalLM, OPTConfig
# from opendelta import LoraModel
# from opendelta.delta_models.lora import LoraConfig
# from opendelta.delta_configs
opt_model_list = [
"facebook/galactica-125m",
"facebook/galactica-1.3b",
"facebook/galactica-6.7b",
"facebook/galactica-30b",
]
def mask_by_len(input, lens, fill_value=0):
'''
input: shape = [N, D]
lens: shape = [N]
'''
mask = torch.arange(input.shape[1], device=input.device).reshape(1, -1)
mask = mask < lens.reshape(-1, 1)
input[mask] = fill_value
return input
def smiles2data(smiles):
graph = smiles2graph(smiles)
x = torch.from_numpy(graph['node_feat'])
edge_index = torch.from_numpy(graph['edge_index'], )
edge_attr = torch.from_numpy(graph['edge_feat'])
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
return data
import re
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")
def _insert_split_marker(m: re.Match):
"""
Applies split marker based on a regex match of special tokens such as
[START_DNA].
Parameters
----------
n : str
Input text to split
Returns
----------
str - the text with the split token added
"""
start_token, _, sequence, end_token = m.groups()
sequence = re.sub(r"(.)", fr"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"
def escape_custom_split_sequence(text):
"""
Applies custom splitting to the text for GALILEO's tokenization
Parameters
----------
text : str
Input text to split
Returns
----------
str - the text with the split token added
"""
return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)
def smiles_handler(text, mol_ph):
smiles_list = []
for match in CUSTOM_SEQ_RE.finditer(text):
smiles = match.group(3)
smiles_list.append(smiles)
text = CUSTOM_SEQ_RE.sub(r'\1\3\4%s' % (mol_ph), text)
text = escape_custom_split_sequence(text)
return text, smiles_list
class Blip2OPT(Blip2Base):
"""
BLIP2 first-stage model with Q-former and ViT.
Supported model types:
- pretrained: pretrained model with vit-g
- pretrain_vitL: pretrained model with vit-large
- coco: fintuned model on coco
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2", "pretrain")
"""
def __init__(
self,
bert_name,
gin_num_layers,
gin_hidden_dim,
gin_drop_ratio,
tune_gnn=False,
tune_qformer=False,
num_query_token=32,
cross_attention_freq=2,
llm_tune='freeze',
peft_dir='',
opt_model="facebook/galactica-1.3b",
prompt="",
args=None,
):
super().__init__()
self.args = args
self.graph_encoder, self.ln_graph = self.init_graph_encoder(gin_num_layers, gin_hidden_dim, gin_drop_ratio)
self.tune_gnn = tune_gnn
self.tune_qformer = tune_qformer
if not tune_gnn:
for name, param in self.graph_encoder.named_parameters():
param.requires_grad = False
self.graph_encoder = self.graph_encoder.eval()
self.graph_encoder.train = disabled_train
logging.info("freeze graph encoder")
else:
logging.info("tune graph encoder")
self.num_query_token = num_query_token
self.Qformer, self.query_tokens = self.init_Qformer(bert_name, num_query_token, self.graph_encoder.num_features, cross_attention_freq)
if not tune_qformer:
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.Qformer = self.Qformer.eval()
self.Qformer.train = disabled_train
self.query_tokens.requires_grad = False
logging.info("freeze qformer encoder")
else:
logging.info("tune qformer encoder")
### remove the unused parameters
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
opt_config_params = {k[len("optconfig_"):]: v for k, v in vars(args).items() if k.startswith("optconfig_")}
config = OPTConfig.from_pretrained(opt_model, **opt_config_params)
## initialize opt model
self.opt_tokenizer = AutoTokenizer.from_pretrained(opt_model, use_fast=False, padding_side='right')
self.opt_tokenizer.add_special_tokens({'pad_token': '<pad>'})
self.opt_tokenizer.add_tokens('<mol>') # molecule placeholder
self.mol_token = '<mol>'
self.opt_tokenizer.mol_token_id = self.opt_tokenizer("<mol>", add_special_tokens=False).input_ids[0]
self.collater = Collater([], [])
if opt_model == 'facebook/galactica-125m':
self.opt_model = OPTForCausalLM.from_pretrained(opt_model, config=config)
else:
if torch.cuda.is_bf16_supported():
self.opt_model = OPTForCausalLM.from_pretrained(opt_model, torch_dtype=torch.bfloat16, config=config)
else:
self.opt_model = OPTForCausalLM.from_pretrained(opt_model, torch_dtype=torch.float16, config=config)
self.opt_model.resize_token_embeddings(len(self.opt_tokenizer)) ## this will cause bug when full fine-tuning the opt model
self.llm_tune = llm_tune
if llm_tune == 'lora':
if peft_dir:
self.opt_model = PeftModel.from_pretrained(self.opt_model, peft_dir, is_trainable=True)
else:
if self.args.peft_config:
peft_config = LoraConfig(**LoraConfig.from_json_file(self.args.peft_config))
else:
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=args.lora_r, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout)
self.peft_config = peft_config
self.opt_model = get_peft_model(self.opt_model, peft_config)
self.opt_model.print_trainable_parameters()
elif llm_tune == 'freeze':
for name, param in self.opt_model.named_parameters():
param.requires_grad = False
elif llm_tune == 'full':
pass
else:
raise NotImplementedError()
## fixme: this is different from the original BLIP2
if args.mode=='pretrain_eval':
self.eos_token_id = self.opt_tokenizer(
"[START_SMILES]\n", add_special_tokens=False
).input_ids
else:
self.eos_token_id = self.opt_tokenizer(
"\n", add_special_tokens=False
).input_ids[0]
self.opt_proj = nn.Linear(
self.Qformer.config.hidden_size, self.opt_model.config.hidden_size
)
## fixme: no prompt yet
self.prompt = prompt
self.rxn_batch_size = args.rxn_batch_size
self.generate_restrict_tokens = args.generate_restrict_tokens
self.train_restrict_tokens = args.train_restrict_tokens
if self.generate_restrict_tokens or self.train_restrict_tokens:
self.bad_words_ids = get_not_allowed_tokens_ids(opt_model)
# prompt_tokens = self.opt_tokenizer(self.prompt, return_tensors="pt")
# self.prompt_length = prompt_tokens.attention_mask.sum(1)
def opt_forward_v2(
self,
inputs_embeds,
attention_mask,
labels,
bad_word_ids=None,
):
output = self.opt_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=labels,
)
logits = output.logits
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
if bad_word_ids:
bad_word_ids = torch.tensor(bad_word_ids, device=logits.device, dtype=torch.long)
bad_word_ids = bad_word_ids.squeeze()
logits[:, :, bad_word_ids] = -100
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_logits = shift_logits.view(-1, self.opt_model.config.vocab_size)
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits, shift_labels.view(-1))
return loss
def forward_action(self, batch, use_gragh=True):
# batch unpack
rxn_ids, graphs, text_tokens = batch
if use_gragh:
graph_embeds, graph_masks = self.graph_encoder(graphs)
if not self.tune_gnn:
graph_embeds = graph_embeds.detach()
# graph embedding calculation
graph_embeds = self.ln_graph(graph_embeds, graph_masks)
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=graph_embeds,
encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct
return_dict=True,
)
mol_tokens = self.opt_proj(query_output.last_hidden_state) # graph_num x num_query_token x D
else:
del graphs
pad_mask = text_tokens.input_ids == self.opt_tokenizer.pad_token_id
targets = text_tokens.input_ids.masked_fill(pad_mask, -100)
targets = targets.masked_fill(text_tokens.is_mol_token, -100)
targets = targets.masked_fill(text_tokens.token_type_ids == 0, -100)
inputs_embeds = self.opt_model.get_input_embeddings()(text_tokens.input_ids)
if use_gragh:
inputs_embeds[text_tokens.is_mol_token] = mol_tokens.flatten(0, 1) # graph_num x emb_dim
if self.train_restrict_tokens:
loss = self.opt_forward_v2(
inputs_embeds=inputs_embeds,
attention_mask=text_tokens.attention_mask,
labels=targets,
bad_word_ids=self.bad_words_ids,
)
else:
outputs = self.opt_model(
inputs_embeds=inputs_embeds,
attention_mask=text_tokens.attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
def forward_abstract(self, batch, use_gragh=True):
# batch unpack
graphs, text_tokens = batch
if use_gragh:
graph_embeds, graph_masks = self.graph_encoder(graphs)
if not self.tune_gnn:
graph_embeds = graph_embeds.detach()
# graph embedding calculation
graph_embeds = self.ln_graph(graph_embeds, graph_masks)
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=graph_embeds,
encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct
return_dict=True,
)
mol_tokens = self.opt_proj(query_output.last_hidden_state) # graph_num x num_query_token x D
else:
del graphs
pad_mask = text_tokens.input_ids == self.opt_tokenizer.pad_token_id
targets = text_tokens.input_ids.masked_fill(pad_mask, -100)
targets = targets.masked_fill(text_tokens.is_mol_token, -100)
inputs_embeds = self.opt_model.get_input_embeddings()(text_tokens.input_ids)
if use_gragh:
inputs_embeds[text_tokens.is_mol_token] = mol_tokens.flatten(0, 1) # graph_num x emb_dim
outputs = self.opt_model(
inputs_embeds=inputs_embeds,
attention_mask=text_tokens.attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
samples,
do_sample=False,
num_beams=5,
max_length=128,
min_length=1,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=1.0,
num_captions=1,
temperature=1,
use_graph=True,
):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
num_beams (int): Number of beams for beam search. 1 means no beam search.
max_length (int): The maximum length of the sequence to be generated.
min_length (int): The minimum length of the sequence to be generated.
top_p (float): The cumulative probability for nucleus sampling.
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
num_captions (int): Number of captions to be generated for each image.
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
graphs = samples['graphs']
prompt_tokens = samples['prompt_tokens']
# prompt_lens = samples['prompt_lens']
# with self.maybe_autocast():
if use_graph:
graph_embeds, graph_masks = self.graph_encoder(graphs)
graph_embeds = self.ln_graph(graph_embeds)
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=graph_embeds,
encoder_attention_mask=graph_masks,
return_dict=True,
)
mol_tokens = self.opt_proj(query_output.last_hidden_state)
prompt_embeds = self.opt_model.get_input_embeddings()(prompt_tokens.input_ids)
if use_graph:
prompt_embeds[prompt_tokens.is_mol_token] = mol_tokens.flatten(0, 1).to(dtype=prompt_embeds.dtype)
extra_params = {}
if self.generate_restrict_tokens:
extra_params['bad_words_ids'] = self.bad_words_ids
outputs = self.opt_model.generate(
inputs_embeds=prompt_embeds,
attention_mask=prompt_tokens.attention_mask,
do_sample=do_sample,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_length=max_length,
min_length=min_length,
# pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
# use_cache=False,
**extra_params
)
output_text = self.opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)
output_text = [text.strip() for text in output_text]
return output_text
|