File size: 16,080 Bytes
95f97c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss
from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, LoraConfig, TaskType, PeftModel
from ogb.utils import smiles2graph
from torch_geometric.loader.dataloader import Collater
from torch_geometric.data import Data
import numpy as np
from lavis.models.blip2_models.blip2 import (
    # Blip2Base,
    disabled_train,
)
from model.blip2 import Blip2Base
from model.help_funcs import get_not_allowed_tokens_ids
from transformers import AutoTokenizer
from transformers import OPTForCausalLM, OPTConfig
# from opendelta import LoraModel
# from opendelta.delta_models.lora import LoraConfig
# from opendelta.delta_configs

opt_model_list = [
    "facebook/galactica-125m",
    "facebook/galactica-1.3b",
    "facebook/galactica-6.7b",
    "facebook/galactica-30b",
]

def mask_by_len(input, lens, fill_value=0):
    '''
    input: shape = [N, D]
    lens: shape = [N]
    '''
    mask = torch.arange(input.shape[1], device=input.device).reshape(1, -1)
    mask = mask < lens.reshape(-1, 1)
    input[mask] = fill_value
    return input


def smiles2data(smiles):
    graph = smiles2graph(smiles)
    x = torch.from_numpy(graph['node_feat'])
    edge_index = torch.from_numpy(graph['edge_index'], )
    edge_attr = torch.from_numpy(graph['edge_feat'])
    data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
    return data

import re
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"

CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")


def _insert_split_marker(m: re.Match):
    """
    Applies split marker based on a regex match of special tokens such as
    [START_DNA].

    Parameters
    ----------
    n : str
        Input text to split

    Returns
    ----------
    str - the text with the split token added
    """
    start_token, _, sequence, end_token = m.groups()
    sequence = re.sub(r"(.)", fr"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
    return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"

def escape_custom_split_sequence(text):
    """
    Applies custom splitting to the text for GALILEO's tokenization

    Parameters
    ----------
    text : str
        Input text to split

    Returns
    ----------
    str - the text with the split token added
    """
    return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)

def smiles_handler(text, mol_ph):
    smiles_list = []
    for match in CUSTOM_SEQ_RE.finditer(text):
        smiles = match.group(3)
        smiles_list.append(smiles)

    text = CUSTOM_SEQ_RE.sub(r'\1\3\4%s' % (mol_ph), text)
    text = escape_custom_split_sequence(text)
    return text, smiles_list


class Blip2OPT(Blip2Base):
    """
    BLIP2 first-stage model with Q-former and ViT.
    Supported model types:
        - pretrained: pretrained model with vit-g
        - pretrain_vitL: pretrained model with vit-large
        - coco: fintuned model on coco
    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("blip2", "pretrain")
    """
    def __init__(
        self,
        bert_name,
        gin_num_layers,
        gin_hidden_dim,
        gin_drop_ratio,
        tune_gnn=False,
        tune_qformer=False,
        num_query_token=32,
        cross_attention_freq=2,
        llm_tune='freeze',
        peft_dir='',
        opt_model="facebook/galactica-1.3b",
        prompt="",
        args=None,
    ):
        super().__init__()
        self.args = args

        self.graph_encoder, self.ln_graph = self.init_graph_encoder(gin_num_layers, gin_hidden_dim, gin_drop_ratio)
        self.tune_gnn = tune_gnn
        self.tune_qformer = tune_qformer
        if not tune_gnn:
            for name, param in self.graph_encoder.named_parameters():
                param.requires_grad = False
            self.graph_encoder = self.graph_encoder.eval()
            self.graph_encoder.train = disabled_train
            logging.info("freeze graph encoder")
        else:
            logging.info("tune graph encoder")

        self.num_query_token = num_query_token
        self.Qformer, self.query_tokens = self.init_Qformer(bert_name, num_query_token, self.graph_encoder.num_features, cross_attention_freq)
        if not tune_qformer:
            for name, param in self.Qformer.named_parameters():
                param.requires_grad = False
            self.Qformer = self.Qformer.eval()
            self.Qformer.train = disabled_train
            self.query_tokens.requires_grad = False
            logging.info("freeze qformer encoder")
        else:
            logging.info("tune qformer encoder")
        ### remove the unused parameters
        self.Qformer.cls = None
        self.Qformer.bert.embeddings.word_embeddings = None
        self.Qformer.bert.embeddings.position_embeddings = None
        for layer in self.Qformer.bert.encoder.layer:
            layer.output = None
            layer.intermediate = None

        opt_config_params = {k[len("optconfig_"):]: v for k, v in vars(args).items() if k.startswith("optconfig_")}
        config = OPTConfig.from_pretrained(opt_model, **opt_config_params)
        ## initialize opt model
        self.opt_tokenizer = AutoTokenizer.from_pretrained(opt_model, use_fast=False, padding_side='right')
        self.opt_tokenizer.add_special_tokens({'pad_token': '<pad>'})
        self.opt_tokenizer.add_tokens('<mol>') # molecule placeholder
        self.mol_token = '<mol>'
        self.opt_tokenizer.mol_token_id = self.opt_tokenizer("<mol>", add_special_tokens=False).input_ids[0]

        self.collater = Collater([], [])

        if opt_model == 'facebook/galactica-125m':
            self.opt_model = OPTForCausalLM.from_pretrained(opt_model, config=config)
        else:
            if torch.cuda.is_bf16_supported():
                self.opt_model = OPTForCausalLM.from_pretrained(opt_model, torch_dtype=torch.bfloat16, config=config)
            else:
                self.opt_model = OPTForCausalLM.from_pretrained(opt_model, torch_dtype=torch.float16, config=config)
        self.opt_model.resize_token_embeddings(len(self.opt_tokenizer)) ## this will cause bug when full fine-tuning the opt model

        self.llm_tune = llm_tune
        if llm_tune == 'lora':
            if peft_dir:
                self.opt_model = PeftModel.from_pretrained(self.opt_model, peft_dir, is_trainable=True)
            else:
                if self.args.peft_config:
                    peft_config = LoraConfig(**LoraConfig.from_json_file(self.args.peft_config))
                else:
                    peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM, inference_mode=False, r=args.lora_r, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout)
                self.peft_config = peft_config
                self.opt_model = get_peft_model(self.opt_model, peft_config)
                self.opt_model.print_trainable_parameters()
        elif llm_tune == 'freeze':
            for name, param in self.opt_model.named_parameters():
                param.requires_grad = False
        elif llm_tune == 'full':
            pass
        else:
            raise NotImplementedError()

        ## fixme: this is different from the original BLIP2
        if args.mode=='pretrain_eval':
            self.eos_token_id = self.opt_tokenizer(
                "[START_SMILES]\n", add_special_tokens=False
            ).input_ids
        else:
            self.eos_token_id = self.opt_tokenizer(
                "\n", add_special_tokens=False
            ).input_ids[0]

        self.opt_proj = nn.Linear(
            self.Qformer.config.hidden_size, self.opt_model.config.hidden_size
        )

        ## fixme: no prompt yet
        self.prompt = prompt
        self.rxn_batch_size = args.rxn_batch_size
        self.generate_restrict_tokens = args.generate_restrict_tokens
        self.train_restrict_tokens = args.train_restrict_tokens
        if self.generate_restrict_tokens or self.train_restrict_tokens:
            self.bad_words_ids = get_not_allowed_tokens_ids(opt_model)
        # prompt_tokens = self.opt_tokenizer(self.prompt, return_tensors="pt")
        # self.prompt_length = prompt_tokens.attention_mask.sum(1)
    
    def opt_forward_v2(
        self, 
        inputs_embeds,
        attention_mask,
        labels,
        bad_word_ids=None,
    ):
        output = self.opt_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            return_dict=True,
            labels=labels,
        )
        logits = output.logits
        labels = labels.to(logits.device)
        # Shift so that tokens < n predict n

        if bad_word_ids:
            bad_word_ids = torch.tensor(bad_word_ids, device=logits.device, dtype=torch.long)
            bad_word_ids = bad_word_ids.squeeze()
            logits[:, :, bad_word_ids] = -100

        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        shift_logits = shift_logits.view(-1, self.opt_model.config.vocab_size)
        loss_fct = CrossEntropyLoss()
        loss = loss_fct(shift_logits, shift_labels.view(-1))
        return loss

    def forward_action(self, batch, use_gragh=True):
        # batch unpack
        rxn_ids, graphs, text_tokens = batch
        if use_gragh:
            graph_embeds, graph_masks = self.graph_encoder(graphs)
            if not self.tune_gnn:
                graph_embeds = graph_embeds.detach()

            # graph embedding calculation
            graph_embeds = self.ln_graph(graph_embeds, graph_masks)
            query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=graph_embeds,
                encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct
                return_dict=True,
            )
            mol_tokens = self.opt_proj(query_output.last_hidden_state) # graph_num x num_query_token x D
        else:
            del graphs

        pad_mask = text_tokens.input_ids == self.opt_tokenizer.pad_token_id
        targets = text_tokens.input_ids.masked_fill(pad_mask, -100)
        targets = targets.masked_fill(text_tokens.is_mol_token, -100)
        targets = targets.masked_fill(text_tokens.token_type_ids == 0, -100)

        inputs_embeds = self.opt_model.get_input_embeddings()(text_tokens.input_ids)
        if use_gragh:
            inputs_embeds[text_tokens.is_mol_token] = mol_tokens.flatten(0, 1) # graph_num x emb_dim

        if self.train_restrict_tokens:
            loss = self.opt_forward_v2(
                inputs_embeds=inputs_embeds,
                attention_mask=text_tokens.attention_mask,
                labels=targets,
                bad_word_ids=self.bad_words_ids,
            )
        else:
            outputs = self.opt_model(
                inputs_embeds=inputs_embeds,
                attention_mask=text_tokens.attention_mask,
                return_dict=True,
                labels=targets,
            )
            loss = outputs.loss
        return {"loss": loss}

    def forward_abstract(self, batch, use_gragh=True):
        # batch unpack
        graphs, text_tokens = batch
        if use_gragh:
            graph_embeds, graph_masks = self.graph_encoder(graphs)
            if not self.tune_gnn:
                graph_embeds = graph_embeds.detach()

            # graph embedding calculation
            graph_embeds = self.ln_graph(graph_embeds, graph_masks)
            query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=graph_embeds,
                encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct
                return_dict=True,
            )
            mol_tokens = self.opt_proj(query_output.last_hidden_state) # graph_num x num_query_token x D
        else:
            del graphs

        pad_mask = text_tokens.input_ids == self.opt_tokenizer.pad_token_id
        targets = text_tokens.input_ids.masked_fill(pad_mask, -100)
        targets = targets.masked_fill(text_tokens.is_mol_token, -100)

        inputs_embeds = self.opt_model.get_input_embeddings()(text_tokens.input_ids)
        if use_gragh:
            inputs_embeds[text_tokens.is_mol_token] = mol_tokens.flatten(0, 1) # graph_num x emb_dim

        outputs = self.opt_model(
            inputs_embeds=inputs_embeds,
            attention_mask=text_tokens.attention_mask,
            return_dict=True,
            labels=targets,
        )
        loss = outputs.loss
        return {"loss": loss}

    @torch.no_grad()
    def generate(
        self,
        samples,
        do_sample=False,
        num_beams=5,
        max_length=128,
        min_length=1,
        top_p=0.9,
        repetition_penalty=1.0,
        length_penalty=1.0,
        num_captions=1,
        temperature=1,
        use_graph=True,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
            num_beams (int): Number of beams for beam search. 1 means no beam search.
            max_length (int): The maximum length of the sequence to be generated.
            min_length (int): The minimum length of the sequence to be generated.
            top_p (float): The cumulative probability for nucleus sampling.
            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
            num_captions (int): Number of captions to be generated for each image.
        Returns:
            captions (list): A list of strings of length batch_size * num_captions.
        """
        graphs = samples['graphs']
        prompt_tokens = samples['prompt_tokens']
        # prompt_lens = samples['prompt_lens']
        # with self.maybe_autocast():
        if use_graph:
            graph_embeds, graph_masks = self.graph_encoder(graphs)
            graph_embeds = self.ln_graph(graph_embeds)

            query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=graph_embeds,
                encoder_attention_mask=graph_masks,
                return_dict=True,
            )
            mol_tokens = self.opt_proj(query_output.last_hidden_state)

        prompt_embeds = self.opt_model.get_input_embeddings()(prompt_tokens.input_ids)
        if use_graph:
            prompt_embeds[prompt_tokens.is_mol_token] = mol_tokens.flatten(0, 1).to(dtype=prompt_embeds.dtype)
        extra_params = {}
        if self.generate_restrict_tokens:
            extra_params['bad_words_ids'] = self.bad_words_ids

        outputs = self.opt_model.generate(
            inputs_embeds=prompt_embeds,
            attention_mask=prompt_tokens.attention_mask,
            do_sample=do_sample,
            top_p=top_p,
            temperature=temperature,
            num_beams=num_beams,
            max_length=max_length,
            min_length=min_length,
            # pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            num_return_sequences=num_captions,
            # use_cache=False,
            **extra_params
        )
        output_text = self.opt_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        output_text = [text.strip() for text in output_text]
        return output_text