Spaces:
Running
Running
File size: 10,749 Bytes
b5da0b6 fd3d54c d7a12c5 b5da0b6 d7a12c5 b5da0b6 fd3d54c b5da0b6 fd3d54c b5da0b6 dbb472d fd3d54c b5da0b6 fd3d54c b5da0b6 fd3d54c b5da0b6 fd3d54c b5da0b6 7479e07 b5da0b6 fd3d54c b5da0b6 fd3d54c a1a0a74 fd3d54c a1a0a74 f6fc453 fd3d54c f6fc453 fd3d54c b5da0b6 2b025a1 fd3d54c de886af fd3d54c b5da0b6 d7a12c5 fd3d54c 7479e07 8d19f5f 7479e07 b5da0b6 fd3d54c b5da0b6 fd3d54c d7a12c5 fd3d54c b5da0b6 fd3d54c c0531f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
#Inferenec function
def predict(openai_gpt4_key, system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_gpt4_key}" #Users will provide their own OPENAI_API_KEY
}
print(f"system message is ^^ {system_msg}")
if system_msg.strip() == '':
initial_message = [{"role": "user", "content": f"{inputs}"},]
multi_turn_message = []
else:
initial_message= [{"role": "system", "content": system_msg},
{"role": "user", "content": f"{inputs}"},]
multi_turn_message = [{"role": "system", "content": system_msg},]
if chat_counter == 0 :
payload = {
"model": "gpt-4",
"messages": initial_message ,
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
print(f"chat_counter - {chat_counter}")
else: #if chat_counter != 0 :
messages=multi_turn_message # Of the type of - [{"role": "system", "content": system_msg},]
for data in chatbot:
user = {}
user["role"] = "user"
user["content"] = data[0]
assistant = {}
assistant["role"] = "assistant"
assistant["content"] = data[1]
messages.append(user)
messages.append(assistant)
temp = {}
temp["role"] = "user"
temp["content"] = inputs
messages.append(temp)
#messages
payload = {
"model": "gpt-4",
"messages": messages, # Of the type of [{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature, #1.0,
"top_p": top_p, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,}
chat_counter+=1
history.append(inputs)
print(f"Logging : payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
print(f"Logging : response code - {response}")
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping first chunk
if counter == 0:
counter+=1
continue
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter, response # resembles {chatbot: chat, state: history}
#Resetting to blank
def reset_textbox():
return gr.update(value='')
#to set a component as visible=False
def set_visible_false():
return gr.update(visible=False)
#to set a component as visible=True
def set_visible_true():
return gr.update(visible=True)
title = """<h1 align="center">🔥GPT4 using Chat-Completions API & 🚀Gradio-Streaming</h1>"""
#display message for themes feature
theme_addon_msg = """<center>🌟 This Demo also introduces you to Gradio Themes. Discover more on Gradio website using our <a href="https://gradio.app/theming-guide/" target="_blank">Themeing-Guide🎨</a>! You can develop from scratch, modify an existing Gradio theme, and share your themes with community by uploading them to huggingface-hub easily using <code>theme.push_to_hub()</code>.</center>
"""
#Using info to add additional information about System message in GPT4
system_msg_info = """A conversation could begin with a system message to gently instruct the assistant.
System message helps set the behavior of the AI Assistant. For example, the assistant could be instructed with 'You are a helpful assistant.'"""
#Modifying existing Gradio Theme
theme = gr.themes.Soft(primary_hue="zinc", secondary_hue="green", neutral_hue="green",
text_size=gr.themes.sizes.text_lg)
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
theme=theme) as demo:
gr.HTML(title)
gr.HTML("""<h3 align="center">🔥This Huggingface Gradio Demo provides you access to GPT4 API with System Messages. Please note that you would be needing an OPENAI API key for GPT4 access🙌</h1>""")
gr.HTML(theme_addon_msg)
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT4?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
with gr.Column(elem_id = "col_container"):
#Users need to provide their own GPT4 API key, it is no longer provided by Huggingface
with gr.Row():
openai_gpt4_key = gr.Textbox(label="OpenAI GPT4 Key", value="", type="password", placeholder="sk..", info = "You have to provide your own GPT4 keys for this app to function properly",)
with gr.Accordion(label="System message:", open=False):
system_msg = gr.Textbox(label="Instruct the AI Assistant to set its beaviour", info = system_msg_info, value="",placeholder="Type here..")
accordion_msg = gr.HTML(value="🚧 To set System message you will have to refresh the app", visible=False)
chatbot = gr.Chatbot(label='GPT4', elem_id="chatbot")
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
state = gr.State([])
with gr.Row():
with gr.Column(scale=7):
b1 = gr.Button().style(full_width=True)
with gr.Column(scale=3):
server_status_code = gr.Textbox(label="Status code from OpenAI server", )
#top_p, temperature
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
chat_counter = gr.Number(value=0, visible=False, precision=0)
#Event handling
inputs.submit( predict, [openai_gpt4_key, system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
b1.click( predict, [openai_gpt4_key, system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
inputs.submit(set_visible_false, [], [system_msg])
b1.click(set_visible_false, [], [system_msg])
inputs.submit(set_visible_true, [], [accordion_msg])
b1.click(set_visible_true, [], [accordion_msg])
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
#Examples
with gr.Accordion(label="Examples for System message:", open=False):
gr.Examples(
examples = [["""You are an AI programming assistant.
- Follow the user's requirements carefully and to the letter.
- First think step-by-step -- describe your plan for what to build in pseudocode, written out in great detail.
- Then output the code in a single code block.
- Minimize any other prose."""], ["""You are ComedianGPT who is a helpful assistant. You answer everything with a joke and witty replies."""],
["You are ChefGPT, a helpful assistant who answers questions with culinary expertise and a pinch of humor."],
["You are FitnessGuruGPT, a fitness expert who shares workout tips and motivation with a playful twist."],
["You are SciFiGPT, an AI assistant who discusses science fiction topics with a blend of knowledge and wit."],
["You are PhilosopherGPT, a thoughtful assistant who responds to inquiries with philosophical insights and a touch of humor."],
["You are EcoWarriorGPT, a helpful assistant who shares environment-friendly advice with a lighthearted approach."],
["You are MusicMaestroGPT, a knowledgeable AI who discusses music and its history with a mix of facts and playful banter."],
["You are SportsFanGPT, an enthusiastic assistant who talks about sports and shares amusing anecdotes."],
["You are TechWhizGPT, a tech-savvy AI who can help users troubleshoot issues and answer questions with a dash of humor."],
["You are FashionistaGPT, an AI fashion expert who shares style advice and trends with a sprinkle of wit."],
["You are ArtConnoisseurGPT, an AI assistant who discusses art and its history with a blend of knowledge and playful commentary."],
["You are a helpful assistant that provides detailed and accurate information."],
["You are an assistant that speaks like Shakespeare."],
["You are a friendly assistant who uses casual language and humor."],
["You are a financial advisor who gives expert advice on investments and budgeting."],
["You are a health and fitness expert who provides advice on nutrition and exercise."],
["You are a travel consultant who offers recommendations for destinations, accommodations, and attractions."],
["You are a movie critic who shares insightful opinions on films and their themes."],
["You are a history enthusiast who loves to discuss historical events and figures."],
["You are a tech-savvy assistant who can help users troubleshoot issues and answer questions about gadgets and software."],
["You are an AI poet who can compose creative and evocative poems on any given topic."],],
inputs = system_msg,)
demo.queue(max_size=99, concurrency_count=20).launch(debug=True) |