ysharma's picture
ysharma HF staff
update the header with emojis
57a8590
import time
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = os.getenv("API_URL") + "/generate_stream"
def predict(inputs, top_p, temperature, top_k, repetition_penalty, history=[]):
if not inputs.startswith("User: "):
inputs = "User: " + inputs + "\n"
payload = {
"inputs": inputs, #"My name is Jane and I",
"parameters": {
"details": True,
"do_sample": True,
"max_new_tokens": 100,
"repetition_penalty": repetition_penalty, #1.03,
"seed": 0,
"temperature": temperature, #0.5,
"top_k": top_k, #10,
"top_p": top_p #0.95
}
}
headers = {
'accept': 'text/event-stream',
'Content-Type': 'application/json'
}
history.append(inputs)
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
# loop over the response data using the iter_lines method of the response object
for chunk in response.iter_lines():
# check whether each line is non-empty
if chunk:
# decode each line as response data is in bytes
partial_words = partial_words + json.loads(chunk.decode()[5:])['token']['text']
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history #{chatbot: chat, state: history} #[(partial_words, history)]
def reset_textbox():
return gr.update(value='')
title = """<h1 align="center">🔥Streaming your 🤖Chatbot output with Gradio🚀</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a 20B large language model.
"""
with gr.Blocks(css = """#col_container {width: 700px; margin-left: auto; margin-right: auto;}
#chatbot {height: 400px; overflow: auto;}""") as demo:
gr.HTML(title)
with gr.Column(elem_id = "col_container"):
chatbot = gr.Chatbot(elem_id='chatbot') #c
inputs = gr.Textbox(placeholder= "Hi my name is Joe.", label= "Type an input and press Enter") #t
state = gr.State([]) #s
b1 = gr.Button()
#inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=0.5, step=0.1, interactive=True, label="Temperature",)
top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
inputs.submit( predict, [inputs, top_p, temperature, top_k, repetition_penalty, state], [chatbot, state],)
b1.click( predict, [inputs, top_p, temperature, top_k, repetition_penalty, state], [chatbot, state],)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
gr.Markdown(description)
demo.queue().launch(debug=True)