Voice-to-jokes / app.py
ysharma's picture
ysharma HF staff
update
44db170
import os
os.system("pip install git+https://github.com/openai/whisper.git")
os.system("pip install neon-tts-plugin-coqui==0.6.0")
import gradio as gr
import whisper
import requests
import tempfile
from neon_tts_plugin_coqui import CoquiTTS
from datasets import load_dataset
import random
dataset = load_dataset("ysharma/short_jokes", split="train")
filtered_dataset = dataset.filter(
lambda x: (True not in [nsfw in x["Joke"].lower() for nsfw in ["warning", "fuck", "dead", "nsfw","69", "sex"]])
)
# Model 2: Sentence Transformer
API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/msmarco-distilbert-base-tas-b"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Language common in both the multilingual models - English, Chinese, Spanish, and French etc
# Model 1: Whisper: Speech-to-text
model = whisper.load_model("base")
#Model 2: Text-to-Speech
LANGUAGES = list(CoquiTTS.langs.keys())
coquiTTS = CoquiTTS()
#Languages for Coqui are: ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'el', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga']
# Driver function
def driver_fun(audio, text) :
print("*********** Inside Driver ************")
if (text == 'dummy') and (audio is not None) :
print(f"Audio is {audio}")
translation, lang = whisper_stt(audio)
else:
translation = text
random_val = random.randrange(0,231657)
if random_val < 226657:
lower_limit = random_val
upper_limit = random_val + 4000
else:
lower_limit = random_val - 4000
upper_limit = random_val
print(f"lower_limit : upper_limit = {lower_limit} : {upper_limit}")
dataset_subset = filtered_dataset['Joke'][lower_limit : upper_limit]
data = query({"inputs": {"source_sentence": translation ,"sentences": dataset_subset} } ) #"That is a happy person"
if 'error' in data:
print(f"Error is : {data}")
return 'Error in model inference - Run Again Please', 'Error in model inference - Run Again Please', None
print(f"type(data) : {type(data)}")
#print(f"data : {data} ")
max_match_score = max(data)
indx_score = data.index(max_match_score)
joke = dataset_subset[indx_score]
print(f"Joke is : {joke}")
speech = tts(joke, 'en')
return translation, joke, speech
# Whisper - speech-to-text
def whisper_stt(audio):
print("Inside Whisper TTS")
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
lang = max(probs, key=probs.get)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options_transl = whisper.DecodingOptions(fp16 = False, language='en', task='translate') #lang
result_transl = whisper.decode(model, mel, options_transl) #model_med
# print the transcribed text
print(f"translation is : {result_transl.text}")
return result_transl.text, lang
# Coqui - Text-to-Speech
def tts(text, language):
print(f"Inside tts - language is : {language}")
print(f"Text is : {text}")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
coquiTTS.get_tts(text, fp, speaker = {"language" : language})
return fp.name
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>AI Assistant - Voice to Joke</center></h1>")
gr.Markdown(
"""<center>Just record <i><b>"Hey Whisper can you tell me a joke on X please?"</i></b>, X = anything you would wish.</center><br><center>Or, press record and just utter a theme. If you see the message 'Error in model inference - Run Again Please', just press the button again every time!</center>
""")
with gr.Row():
with gr.Column():
in_audio = gr.Audio(source="microphone", type="filepath", label='Record your voice command here in English -') #type='filepath'
b1 = gr.Button("AI Response")
out_transcript = gr.Textbox(label= 'Transcript of your Audio using OpenAI Whisper')
with gr.Column():
in_text = gr.Textbox(label='Or enter any text here..', value='dummy')
out_audio = gr.Audio(label='Audio response form CoquiTTS')
out_generated_joke = gr.Textbox(label= 'Joke returned! ')
b1.click(driver_fun,inputs=[in_audio, in_text], outputs=[out_transcript, out_generated_joke, out_audio]) #out_translation_en, out_generated_text,out_generated_text_en,
with gr.Row():
gr.Markdown(
"""Model pipeline consisting of - <br>- [**Whisper**](https://github.com/openai/whisper) for Speech-to-text, <br>- [**CoquiTTS**](https://huggingface.co/coqui) for Text-To-Speech.<br>- [Sentence Transformers](https://huggingface.co/models?library=sentence-transformers&sort=downloads)<br>- Front end is built using [**Gradio Block API**](https://gradio.app/docs/#blocks).<br><be>If you want to reuse the App, simply click on the small cross button in the top right corner of your voice record panel, and then press record again! <br><br> Few Caveats:<br>1. Please note that sometimes the joke might be NSFW. Although, I have tried putting in filters to not have that experience, but they seem non-exhaustive.<br>2. Sometimes the joke might not match your theme, please bear with the limited capabilities of free open-source ML prototypes.<br>3. Much like real life, sometimes the joke might just not land, haha!<br>4. Repeating this: If you see the message 'Error in model inference - Run Again Please', just press the button again every time!
""")
demo.launch(enable_queue=True, debug=True)