Spaces:
Runtime error
Runtime error
File size: 3,829 Bytes
34fb220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import utils
from collections import OrderedDict
import numpy as np
from .abs_model import abs_model
from .Loss.Loss import norm_loss
from .blocks import *
from .SSN_Model import SSN_Model
class SSN(abs_model):
def __init__(self, opt):
mid_act = opt['model']['mid_act']
out_act = opt['model']['out_act']
in_channels = opt['model']['in_channels']
out_channels = opt['model']['out_channels']
self.ncols = opt['hyper_params']['n_cols']
self.model = SSN_Model(in_channels=in_channels, out_channels=out_channels, mid_act=mid_act, out_act=out_act)
self.optimizer = get_optimizer(opt, self.model)
self.visualization = {}
self.norm_loss_ = norm_loss(norm=1)
def setup_input(self, x):
return x
def forward(self, x):
keys = ['mask', 'ibl']
for k in keys:
assert k in x.keys(), '{} not in input'.format(k)
mask = x['mask']
ibl = x['ibl']
return self.model(mask, ibl)
def compute_loss(self, y, pred):
total_loss = self.norm_loss_.loss(y, pred)
return total_loss
def supervise(self, input_x, y, is_training:bool)->float:
optimizer = self.optimizer
model = self.model
optimizer.zero_grad()
pred = self.forward(input_x)
loss = self.compute_loss(y, pred)
# logging.info('Pred/Target: {}, {}/{}, {}'.format(pred.min().item(), pred.max().item(), y.min().item(), y.max().item()))
if is_training:
loss.backward()
optimizer.step()
self.visualization['mask'] = input_x['mask'].detach()
self.visualization['ibl'] = input_x['ibl'].detach()
self.visualization['y'] = y.detach()
self.visualization['pred'] = pred.detach()
return loss.item()
def get_visualize(self) -> OrderedDict:
""" Convert to visualization numpy array
"""
nrows = self.ncols
visualizations = self.visualization
ret_vis = OrderedDict()
for k, v in visualizations.items():
batch = v.shape[0]
n = min(nrows, batch)
plot_v = v[:n]
plot_v = (plot_v - plot_v.min())/(plot_v.max() - plot_v.min())
ret_vis[k] = np.clip(utils.make_grid(plot_v.cpu(), nrow=nrows).numpy().transpose(1,2,0), 0.0, 1.0)
return ret_vis
def get_logs(self):
pass
def inference(self, x):
keys = ['mask', 'ibl']
for k in keys:
assert k in x.keys(), '{} not in input'.format(k)
assert len(x[k].shape) == 2, '{} should be 2D tensor'.format(k)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
mask = torch.tensor(x['mask'])[None, None, ...].float().to(device)
ibl = torch.tensor(x['ibl'])[None, None, ...].float().to(device)
input_x = {'mask': mask, 'ibl': ibl}
pred = self.forward(input_x)
pred = np.clip(pred[0, 0].detach().cpu().numpy() / 30.0, 0.0, 1.0)
return pred
def batch_inference(self, x):
# TODO
pass
""" Getter & Setter
"""
def get_models(self) -> dict:
return {'model': self.model}
def get_optimizers(self) -> dict:
return {'optimizer': self.optimizer}
def set_models(self, models: dict) :
# input test
if 'model' not in models.keys():
raise ValueError('{} not in self.model'.format('model'))
self.model = models['model']
def set_optimizers(self, optimizer: dict):
self.optimizer = optimizer['optimizer']
####################
# Personal Methods #
####################
|