File size: 7,590 Bytes
34fb220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from abc import abstractmethod
from functools import partial
from typing import Iterable
import math

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

from .SSN import  Conv, Conv2DMod, Decoder, Up
from .attention import AttentionBlock
from .blocks import ResBlock, Res_Type, get_activation


class Attention_Encoder(nn.Module):
    def __init__(self, in_channels=3, mid_act='gelu', dropout=0.0, num_heads=8, resnet=True):
        super(Attention_Encoder, self).__init__()

        self.in_conv        = Conv(in_channels, 32-in_channels, stride=1, activation=mid_act, resnet=resnet)
        self.down_32_64     = Conv(32, 64, stride=2, activation=mid_act, resnet=resnet)
        self.down_64_64_1   = Conv(64, 64, activation=mid_act, resnet=resnet)

        self.down_64_128    = Conv(64, 128, stride=2, activation=mid_act, resnet=resnet)
        self.down_128_128_1 = Conv(128, 128,  activation=mid_act, resnet=resnet)

        self.down_128_256   = Conv(128, 256, stride=2, activation=mid_act, resnet=resnet)
        self.down_256_256_1 = Conv(256, 256, activation=mid_act, resnet=resnet)
        self.down_256_256_1_attn = AttentionBlock(256, num_heads)

        self.down_256_512   = Conv(256, 512, stride=2, activation=mid_act, resnet=resnet)
        self.down_512_512_1 = Conv(512, 512, activation=mid_act, resnet=resnet)
        self.down_512_512_1_attn = AttentionBlock(512, num_heads)

        self.down_512_512_2 = Conv(512, 512, activation=mid_act, resnet=resnet)
        self.down_512_512_2_attn = AttentionBlock(512, num_heads)

        self.down_512_512_3 = Conv(512, 512, activation=mid_act, resnet=resnet)
        self.down_512_512_3_attn = AttentionBlock(512, num_heads)


    def forward(self, x):
        x1 = self.in_conv(x)  # 32 x 256 x 256
        x1 = torch.cat((x, x1), dim=1)

        x2 = self.down_32_64(x1)
        x3 = self.down_64_64_1(x2)

        x4 = self.down_64_128(x3)
        x5 = self.down_128_128_1(x4)

        x6 = self.down_128_256(x5)
        x7 = self.down_256_256_1(x6)
        x7 = self.down_256_256_1_attn(x7)

        x8 = self.down_256_512(x7)
        x9 = self.down_512_512_1(x8)
        x9 = self.down_512_512_1_attn(x9)

        x10 = self.down_512_512_2(x9)
        x10 = self.down_512_512_2_attn(x10)

        x11 = self.down_512_512_3(x10)
        x11 = self.down_512_512_3_attn(x11)

        return x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1


class Attention_Decoder(nn.Module):
    def __init__(self, out_channels=3, mid_act='gelu', out_act='sigmoid', resnet = True, num_heads=8):

        super(Attention_Decoder, self).__init__()

        input_channel = 512
        fea_dim       = 100

        self.to_style1 = nn.Linear(in_features=fea_dim, out_features=input_channel)

        self.up_16_16_1 = Conv(input_channel, 256, activation=mid_act, style=True, resnet=resnet)
        self.up_16_16_1_attn = AttentionBlock(256, num_heads=num_heads)

        self.up_16_16_2 = Conv(768, 512, activation=mid_act, resnet=resnet)
        self.up_16_16_2_attn = AttentionBlock(512, num_heads=num_heads)

        self.up_16_16_3      = Conv(1024, 512, activation=mid_act, resnet=resnet)
        self.up_16_16_3_attn = AttentionBlock(512, num_heads=num_heads)

        self.up_16_32        = Up(1024, 256, activation=mid_act, resnet=resnet)
        self.to_style2       = nn.Linear(in_features=fea_dim, out_features=512)
        self.up_32_32_1      = Conv(512, 256, activation=mid_act, style=True, resnet=resnet)
        self.up_32_32_1_attn = AttentionBlock(256, num_heads=num_heads)

        self.up_32_64   = Up(512, 128, activation=mid_act, resnet=resnet)
        self.to_style3  = nn.Linear(in_features=fea_dim, out_features=256)
        self.up_64_64_1 = Conv(256, 128, activation=mid_act, style=True, resnet=resnet)

        self.up_64_128    = Up(256, 64, activation=mid_act, resnet=resnet)
        self.to_style4    = nn.Linear(in_features=fea_dim, out_features=128)
        self.up_128_128_1 = Conv(128, 64, activation=mid_act, style=True, resnet=resnet)

        self.up_128_256 = Up(128, 32, activation=mid_act, resnet=resnet)
        self.out_conv   = Conv(64, out_channels, activation=out_act)
        self.out_act = get_activation(out_act)


    def forward(self, x, style):
        x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1 = x

        style1 = self.to_style1(style)
        y = self.up_16_16_1(x11, style1)  # 256 x 16 x 16
        y = self.up_16_16_1_attn(y)

        y = torch.cat((x10, y), dim=1)  # 768 x 16 x 16
        y = self.up_16_16_2(y, y)  # 512 x 16 x 16
        y = self.up_16_16_2_attn(y)


        y = torch.cat((x9, y), dim=1)  # 1024 x 16 x 16
        y = self.up_16_16_3(y, y)  # 512 x 16 x 16
        y = self.up_16_16_3_attn(y)

        y = torch.cat((x8, y), dim=1)  # 1024 x 16 x 16
        y = self.up_16_32(y, y)  # 256 x 32 x 32

        y = torch.cat((x7, y), dim=1)
        style2 = self.to_style2(style)
        y = self.up_32_32_1(y, style2)  # 256 x 32 x 32
        y = self.up_32_32_1_attn(y)

        y = torch.cat((x6, y), dim=1)
        y = self.up_32_64(y, y)

        y = torch.cat((x5, y), dim=1)
        style3 = self.to_style3(style)

        y = self.up_64_64_1(y, style3)  # 128 x 64 x 64

        y = torch.cat((x4, y), dim=1)
        y = self.up_64_128(y, y)

        y = torch.cat((x3, y), dim=1)
        style4 = self.to_style4(style)
        y = self.up_128_128_1(y, style4)  # 64 x 128 x 128

        y = torch.cat((x2, y), dim=1)
        y = self.up_128_256(y, y)  # 32 x 256 x 256

        y = torch.cat((x1, y), dim=1)
        y = self.out_conv(y, y)  # 3 x 256 x 256
        y = self.out_act(y)
        return y



class Attention_SSN(nn.Module):
    def __init__(self, in_channels, out_channels, num_heads=8, resnet=True, mid_act='gelu', out_act='gelu'):
        super(Attention_SSN, self).__init__()
        self.encoder = Attention_Encoder(in_channels, mid_act, num_heads, resnet)
        self.decoder = Attention_Decoder(out_channels, mid_act, out_act, resnet)


    def forward(self, x, softness):
        latent  = self.encoder(x)
        pred    = self.decoder(latent, softness)

        return pred


def get_model_size(model):
    param_size = 0
    import pdb; pdb.set_trace()
    for param in model.parameters():
        param_size += param.nelement() * param.element_size()

    buffer_size = 0
    for buffer in model.buffers():
        buffer_size += buffer.nelement() * buffer.element_size()

    size_all_mb = (param_size + buffer_size) / 1024 ** 2
    print('model size: {:.3f}MB'.format(size_all_mb))
    # return param_size + buffer_size
    return size_all_mb


if __name__ == '__main__':
    model = AttentionBlock(in_channels=256, num_heads=8)
    x = torch.randn(5, 256, 64, 64)

    y = model(x)
    print('{}, {}'.format(x.shape, y.shape))

    # ------------------------------------------------------------------ #
    in_channels  = 3
    out_channels = 1
    num_heads    = 8
    resnet       = True
    mid_act      = 'gelu'
    out_act      = 'gelu'

    model = Attention_SSN(in_channels=in_channels,
                           out_channels=out_channels,
                           num_heads=num_heads,
                           resnet=resnet,
                           mid_act=mid_act,
                           out_act=out_act)

    x        = torch.randn(5, 3, 256, 256)
    softness = torch.randn(5, 100)


    y = model(x, softness)


    print('x: {}, y: {}'.format(x.shape, y.shape))

    get_model_size(model)
    # ------------------------------------------------------------------ #