File size: 6,892 Bytes
34fb220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from enum import Enum
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import logging


def get_model_size(model):
    param_size = 0
    for param in model.parameters():
        param_size += param.nelement() * param.element_size()

    buffer_size = 0
    for buffer in model.buffers():
        buffer_size += buffer.nelement() * buffer.element_size()

    size_all_mb = (param_size + buffer_size) / 1024 ** 2
    print('model size: {:.3f}MB'.format(size_all_mb))
    # return param_size + buffer_size
    return size_all_mb


def weights_init(init_type='gaussian'):
    def init_fun(m):
        classname = m.__class__.__name__
        if (classname.find('Conv') == 0 or classname.find(
                'Linear') == 0) and hasattr(m, 'weight'):
            if init_type == 'gaussian':
                nn.init.normal_(m.weight, 0.0, 0.02)
            elif init_type == 'xavier':
                nn.init.xavier_normal_(m.weight, gain=math.sqrt(2))
            elif init_type == 'kaiming':
                nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                nn.init.orthogonal_(m.weight, gain=math.sqrt(2))
            elif init_type == 'default':
                pass
            else:
                assert 0, "Unsupported initialization: {}".format(init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                nn.init.constant_(m.bias, 0.0)

    return init_fun


def freeze(module):
    for param in module.parameters():
        param.requires_grad = False


def unfreeze(module):
    for param in module.parameters():
        param.requires_grad = True


def get_optimizer(opt, model):
    lr           = float(opt['hyper_params']['lr'])
    beta1        = float(opt['model']['beta1'])
    weight_decay = float(opt['model']['weight_decay'])
    opt_name     = opt['model']['optimizer']

    optim_params = []
    # weight decay
    for key, value in model.named_parameters():
        if not value.requires_grad:
            continue  # frozen weights

        if key[-4:] == 'bias':
            optim_params += [{'params': value, 'weight_decay': 0.0}]
        else:
            optim_params += [{'params': value,
                              'weight_decay': weight_decay}]

    if opt_name == 'Adam':
        return optim.Adam(optim_params,
                            lr=lr,
                            betas=(beta1, 0.999),
                            eps=1e-5)
    else:
        err = '{} not implemented yet'.format(opt_name)
        logging.error(err)
        raise NotImplementedError(err)


def get_activation(activation):
    act_func = {
        'relu':nn.ReLU(),
        'sigmoid':nn.Sigmoid(),
        'tanh':nn.Tanh(),
        'prelu':nn.PReLU(),
        'leaky_relu':nn.LeakyReLU(0.2),
        'gelu':nn.GELU(),
        }
    if activation not in act_func.keys():
        logging.error("activation {} is not implemented yet".format(activation))
        assert False

    return act_func[activation]


def get_norm(out_channels, norm_type='Group', groups=32):
    norm_set = ['Instance', 'Batch', 'Group']
    if norm_type not in norm_set:
        err = "Normalization {} has not been implemented yet"
        logging.error(err)
        raise ValueError(err)

    if norm_type == 'Instance':
        return nn.InstanceNorm2d(out_channels, affine=True)

    if norm_type == 'Batch':
        return nn.BatchNorm2d(out_channels)

    if norm_type == 'Group':
        if out_channels >= 32:
            groups = 32
        else:
            groups = max(out_channels // 2, 1)

        return nn.GroupNorm(groups, out_channels)
    else:
        raise NotImplementedError


class Conv(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, norm_type='Batch', activation='relu'):
        super().__init__()

        act_func   = get_activation(activation)
        norm_layer = get_norm(out_channels, norm_type)
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=True, padding_mode='reflect'),
            norm_layer,
            act_func)

    def forward(self, x):
        return self.conv(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class Up(nn.Module):
    def __init__(self):
        super().__init__()
        pass

    def forward(self, x):
        return F.interpolate(x, scale_factor=2, mode='bilinear')


class Down(nn.Module):
    def __init__(self, channels, use_conv):
        super().__init__()
        self.use_conv = use_conv

        if self.use_conv:
            self.op = nn.Conv2d(channels, channels, 3, stride=2, padding=1)
        else:
            self.op = nn.AvgPool2d(kernel_size=3, stride=2, padding=1)


    def forward(self, x):
        return self.op(x)


class Res_Type(Enum):
    UP   = 1
    DOWN = 2
    SAME = 3


class ResBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, dropout=0.0, updown=Res_Type.DOWN, mid_act='leaky'):
        """ ResBlock to cover several cases:
              1. Up/Down/Same
              2. in_channels != out_channels
        """
        super().__init__()

        self.updown = updown

        self.in_norm = get_norm(out_channels, 'Group')
        self.in_act  = get_activation(mid_act)
        self.in_conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=True)

        # up down
        if self.updown == Res_Type.DOWN:
            self.h_updown = Down(in_channels, use_conv=True)
            self.x_updown = Down(in_channels, use_conv=True)
        elif self.updown == Res_Type.UP:
            self.h_updown = Up()
            self.x_updown = Up()
        else:
            self.h_updown = nn.Identity()

        self.out_layer = nn.Sequential(
            get_norm(out_channels, 'Group'),
            get_activation(mid_act),
            nn.Dropout(p=dropout),
            zero_module(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=True))
        )


    def forward(self, x):
        # in layer
        h = self.in_act(self.in_norm(x))
        h = self.in_conv(self.h_updown(h))
        x = self.x_updown(x)

        # out layer
        h = self.out_layer(h)
        return x + h



if __name__ == '__main__':
    x = torch.randn(5, 3, 256, 256)
    up = Up()
    conv_down = Down(3, True)
    pool_down = Down(3, False)

    print('Up: {}'.format(up(x).shape))
    print('Conv down: {}'.format(conv_down(x).shape))
    print('Pool down: {}'.format(pool_down(x).shape))

    up_model = ResBlock(3, 6, updown=True)
    down_model = ResBlock(3, 6, updown=False)

    print('model down: {}'.format(up_model(x).shape))
    print('model down: {}'.format(down_model(x).shape))