File size: 6,152 Bytes
34fb220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import numpy as np

from .SSN import  Conv, Conv2DMod, Decoder, Up
from .attention import AttentionBlock
from .blocks import ResBlock, Res_Type, get_activation

class Attention_Encoder(nn.Module):
    def __init__(self, in_channels=3, mid_act='gelu', dropout=0.0, num_heads=8, resnet=True):
        super(Attention_Encoder, self).__init__()

        self.in_conv        = Conv(in_channels, 32-in_channels, stride=1, activation=mid_act, resnet=resnet)
        self.down_32_64     = Conv(32, 64, stride=2, activation=mid_act, resnet=resnet)
        self.down_64_64_1   = Conv(64, 64, activation=mid_act, resnet=resnet)

        self.down_64_128    = Conv(64, 128, stride=2, activation=mid_act, resnet=resnet)
        self.down_128_128_1 = Conv(128, 128,  activation=mid_act, resnet=resnet)

        self.down_128_256   = Conv(128, 256, stride=2, activation=mid_act, resnet=resnet)
        self.down_256_256_1 = Conv(256, 256, activation=mid_act, resnet=resnet)
        self.down_256_256_1_attn = AttentionBlock(256, num_heads)

        self.down_256_512   = Conv(256, 512, stride=2, activation=mid_act, resnet=resnet)
        self.down_512_512_1 = Conv(512, 512, activation=mid_act, resnet=resnet)
        self.down_512_512_1_attn = AttentionBlock(512, num_heads)

        self.down_512_512_2 = Conv(512, 512, activation=mid_act, resnet=resnet)
        self.down_512_512_2_attn = AttentionBlock(512, num_heads)

        self.down_512_512_3 = Conv(512, 512, activation=mid_act, resnet=resnet)
        self.down_512_512_3_attn = AttentionBlock(512, num_heads)


    def forward(self, x):
        x1 = self.in_conv(x)  # 32 x 256 x 256
        x1 = torch.cat((x, x1), dim=1)

        x2 = self.down_32_64(x1)
        x3 = self.down_64_64_1(x2)

        x4 = self.down_64_128(x3)
        x5 = self.down_128_128_1(x4)

        x6 = self.down_128_256(x5)
        x7 = self.down_256_256_1(x6)
        x7 = self.down_256_256_1_attn(x7)

        x8 = self.down_256_512(x7)
        x9 = self.down_512_512_1(x8)
        x9 = self.down_512_512_1_attn(x9)

        x10 = self.down_512_512_2(x9)
        x10 = self.down_512_512_2_attn(x10)

        x11 = self.down_512_512_3(x10)
        x11 = self.down_512_512_3_attn(x11)

        return x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1


class Attention_Decoder(nn.Module):
    def __init__(self, out_channels=3, mid_act='gelu', out_act='sigmoid', resnet = True, num_heads=8):

        super(Attention_Decoder, self).__init__()

        input_channel = 512
        fea_dim       = 100

        self.to_style1 = nn.Linear(in_features=fea_dim, out_features=input_channel)

        self.up_16_16_1 = Conv(input_channel, 256, activation=mid_act, style=False, resnet=resnet)
        self.up_16_16_1_attn = AttentionBlock(256, num_heads=num_heads)

        self.up_16_16_2 = Conv(768, 512, activation=mid_act, resnet=resnet)
        self.up_16_16_2_attn = AttentionBlock(512, num_heads=num_heads)

        self.up_16_16_3      = Conv(1024, 512, activation=mid_act, resnet=resnet)
        self.up_16_16_3_attn = AttentionBlock(512, num_heads=num_heads)

        self.up_16_32        = Up(1024, 256, activation=mid_act, resnet=resnet)
        self.to_style2       = nn.Linear(in_features=fea_dim, out_features=512)
        self.up_32_32_1      = Conv(512, 256, activation=mid_act, style=False, resnet=resnet)
        self.up_32_32_1_attn = AttentionBlock(256, num_heads=num_heads)

        self.up_32_64   = Up(512, 128, activation=mid_act, resnet=resnet)
        self.to_style3  = nn.Linear(in_features=fea_dim, out_features=256)
        self.up_64_64_1 = Conv(256, 128, activation=mid_act, style=False, resnet=resnet)

        self.up_64_128    = Up(256, 64, activation=mid_act, resnet=resnet)
        self.to_style4    = nn.Linear(in_features=fea_dim, out_features=128)
        self.up_128_128_1 = Conv(128, 64, activation=mid_act, style=False, resnet=resnet)

        self.up_128_256 = Up(128, 32, activation=mid_act, resnet=resnet)
        self.out_conv   = Conv(64, out_channels, activation=out_act)
        self.out_act = get_activation(out_act)


    def forward(self, x):
        x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1 = x

        y = self.up_16_16_1(x11)  # 256 x 16 x 16
        y = self.up_16_16_1_attn(y)

        y = torch.cat((x10, y), dim=1)  # 768 x 16 x 16
        y = self.up_16_16_2(y, y)  # 512 x 16 x 16
        y = self.up_16_16_2_attn(y)


        y = torch.cat((x9, y), dim=1)  # 1024 x 16 x 16
        y = self.up_16_16_3(y, y)  # 512 x 16 x 16
        y = self.up_16_16_3_attn(y)

        y = torch.cat((x8, y), dim=1)  # 1024 x 16 x 16
        y = self.up_16_32(y, y)  # 256 x 32 x 32

        y = torch.cat((x7, y), dim=1)
        y = self.up_32_32_1(y)  # 256 x 32 x 32
        y = self.up_32_32_1_attn(y)

        y = torch.cat((x6, y), dim=1)
        y = self.up_32_64(y, y)

        y = torch.cat((x5, y), dim=1)

        y = self.up_64_64_1(y)  # 128 x 64 x 64

        y = torch.cat((x4, y), dim=1)
        y = self.up_64_128(y, y)

        y = torch.cat((x3, y), dim=1)
        y = self.up_128_128_1(y)  # 64 x 128 x 128

        y = torch.cat((x2, y), dim=1)
        y = self.up_128_256(y, y)  # 32 x 256 x 256

        y = torch.cat((x1, y), dim=1)
        y = self.out_conv(y, y)  # 3 x 256 x 256
        y = self.out_act(y)
        return y


class Attention_Unet(nn.Module):
    def __init__(self, in_channels, out_channels, num_heads=8, resnet=True, mid_act='gelu', out_act='gelu'):
        super(Attention_Unet, self).__init__()
        self.encoder = Attention_Encoder(in_channels, mid_act, num_heads, resnet)
        self.decoder = Attention_Decoder(out_channels, mid_act, out_act, resnet)


    def forward(self, x):
        latent  = self.encoder(x)
        pred    = self.decoder(latent)
        return pred


if __name__ == '__main__':
    test_input = torch.randn(5, 1, 256, 256)
    style = torch.randn(5, 100)

    model = SSN_v1(1, 1, mid_act='gelu', out_act='gelu', resnet=True)
    test_out = model(test_input, style)

    print('Ouptut shape: ', test_out.shape)