Spaces:
Runtime error
Runtime error
File size: 6,152 Bytes
34fb220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
import numpy as np
from .SSN import Conv, Conv2DMod, Decoder, Up
from .attention import AttentionBlock
from .blocks import ResBlock, Res_Type, get_activation
class Attention_Encoder(nn.Module):
def __init__(self, in_channels=3, mid_act='gelu', dropout=0.0, num_heads=8, resnet=True):
super(Attention_Encoder, self).__init__()
self.in_conv = Conv(in_channels, 32-in_channels, stride=1, activation=mid_act, resnet=resnet)
self.down_32_64 = Conv(32, 64, stride=2, activation=mid_act, resnet=resnet)
self.down_64_64_1 = Conv(64, 64, activation=mid_act, resnet=resnet)
self.down_64_128 = Conv(64, 128, stride=2, activation=mid_act, resnet=resnet)
self.down_128_128_1 = Conv(128, 128, activation=mid_act, resnet=resnet)
self.down_128_256 = Conv(128, 256, stride=2, activation=mid_act, resnet=resnet)
self.down_256_256_1 = Conv(256, 256, activation=mid_act, resnet=resnet)
self.down_256_256_1_attn = AttentionBlock(256, num_heads)
self.down_256_512 = Conv(256, 512, stride=2, activation=mid_act, resnet=resnet)
self.down_512_512_1 = Conv(512, 512, activation=mid_act, resnet=resnet)
self.down_512_512_1_attn = AttentionBlock(512, num_heads)
self.down_512_512_2 = Conv(512, 512, activation=mid_act, resnet=resnet)
self.down_512_512_2_attn = AttentionBlock(512, num_heads)
self.down_512_512_3 = Conv(512, 512, activation=mid_act, resnet=resnet)
self.down_512_512_3_attn = AttentionBlock(512, num_heads)
def forward(self, x):
x1 = self.in_conv(x) # 32 x 256 x 256
x1 = torch.cat((x, x1), dim=1)
x2 = self.down_32_64(x1)
x3 = self.down_64_64_1(x2)
x4 = self.down_64_128(x3)
x5 = self.down_128_128_1(x4)
x6 = self.down_128_256(x5)
x7 = self.down_256_256_1(x6)
x7 = self.down_256_256_1_attn(x7)
x8 = self.down_256_512(x7)
x9 = self.down_512_512_1(x8)
x9 = self.down_512_512_1_attn(x9)
x10 = self.down_512_512_2(x9)
x10 = self.down_512_512_2_attn(x10)
x11 = self.down_512_512_3(x10)
x11 = self.down_512_512_3_attn(x11)
return x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1
class Attention_Decoder(nn.Module):
def __init__(self, out_channels=3, mid_act='gelu', out_act='sigmoid', resnet = True, num_heads=8):
super(Attention_Decoder, self).__init__()
input_channel = 512
fea_dim = 100
self.to_style1 = nn.Linear(in_features=fea_dim, out_features=input_channel)
self.up_16_16_1 = Conv(input_channel, 256, activation=mid_act, style=False, resnet=resnet)
self.up_16_16_1_attn = AttentionBlock(256, num_heads=num_heads)
self.up_16_16_2 = Conv(768, 512, activation=mid_act, resnet=resnet)
self.up_16_16_2_attn = AttentionBlock(512, num_heads=num_heads)
self.up_16_16_3 = Conv(1024, 512, activation=mid_act, resnet=resnet)
self.up_16_16_3_attn = AttentionBlock(512, num_heads=num_heads)
self.up_16_32 = Up(1024, 256, activation=mid_act, resnet=resnet)
self.to_style2 = nn.Linear(in_features=fea_dim, out_features=512)
self.up_32_32_1 = Conv(512, 256, activation=mid_act, style=False, resnet=resnet)
self.up_32_32_1_attn = AttentionBlock(256, num_heads=num_heads)
self.up_32_64 = Up(512, 128, activation=mid_act, resnet=resnet)
self.to_style3 = nn.Linear(in_features=fea_dim, out_features=256)
self.up_64_64_1 = Conv(256, 128, activation=mid_act, style=False, resnet=resnet)
self.up_64_128 = Up(256, 64, activation=mid_act, resnet=resnet)
self.to_style4 = nn.Linear(in_features=fea_dim, out_features=128)
self.up_128_128_1 = Conv(128, 64, activation=mid_act, style=False, resnet=resnet)
self.up_128_256 = Up(128, 32, activation=mid_act, resnet=resnet)
self.out_conv = Conv(64, out_channels, activation=out_act)
self.out_act = get_activation(out_act)
def forward(self, x):
x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1 = x
y = self.up_16_16_1(x11) # 256 x 16 x 16
y = self.up_16_16_1_attn(y)
y = torch.cat((x10, y), dim=1) # 768 x 16 x 16
y = self.up_16_16_2(y, y) # 512 x 16 x 16
y = self.up_16_16_2_attn(y)
y = torch.cat((x9, y), dim=1) # 1024 x 16 x 16
y = self.up_16_16_3(y, y) # 512 x 16 x 16
y = self.up_16_16_3_attn(y)
y = torch.cat((x8, y), dim=1) # 1024 x 16 x 16
y = self.up_16_32(y, y) # 256 x 32 x 32
y = torch.cat((x7, y), dim=1)
y = self.up_32_32_1(y) # 256 x 32 x 32
y = self.up_32_32_1_attn(y)
y = torch.cat((x6, y), dim=1)
y = self.up_32_64(y, y)
y = torch.cat((x5, y), dim=1)
y = self.up_64_64_1(y) # 128 x 64 x 64
y = torch.cat((x4, y), dim=1)
y = self.up_64_128(y, y)
y = torch.cat((x3, y), dim=1)
y = self.up_128_128_1(y) # 64 x 128 x 128
y = torch.cat((x2, y), dim=1)
y = self.up_128_256(y, y) # 32 x 256 x 256
y = torch.cat((x1, y), dim=1)
y = self.out_conv(y, y) # 3 x 256 x 256
y = self.out_act(y)
return y
class Attention_Unet(nn.Module):
def __init__(self, in_channels, out_channels, num_heads=8, resnet=True, mid_act='gelu', out_act='gelu'):
super(Attention_Unet, self).__init__()
self.encoder = Attention_Encoder(in_channels, mid_act, num_heads, resnet)
self.decoder = Attention_Decoder(out_channels, mid_act, out_act, resnet)
def forward(self, x):
latent = self.encoder(x)
pred = self.decoder(latent)
return pred
if __name__ == '__main__':
test_input = torch.randn(5, 1, 256, 256)
style = torch.randn(5, 100)
model = SSN_v1(1, 1, mid_act='gelu', out_act='gelu', resnet=True)
test_out = model(test_input, style)
print('Ouptut shape: ', test_out.shape)
|