yichen-purdue's picture
update the exmaples
2e7060e
raw
history blame
5.77 kB
import torch
from torch import nn
import logging
from pathlib import Path
import gradio as gr
import numpy as np
import cv2
import model_utils
from models.SSN import SSN
config_file = 'configs/SSN.yaml'
weight = 'weights/SSN/0000001760.pt'
device = torch.device('cuda:0')
device = torch.device('cpu')
model = model_utils.load_model(config_file, weight, SSN, device)
DEFAULT_INTENSITY = 0.9
DEFAULT_GAMMA = 2.0
logging.info('Model loading succeed')
cur_rgba = None
cur_shadow = None
cur_intensity = DEFAULT_INTENSITY
cur_gamma = DEFAULT_GAMMA
def resize(img, size):
h, w = img.shape[:2]
if h > w:
newh = size
neww = int(w / h * size)
else:
neww = size
newh = int(h / w * size)
resized_img = cv2.resize(img, (neww, newh), interpolation=cv2.INTER_AREA)
if len(img.shape) != len(resized_img.shape):
resized_img = resized_img[..., none]
return resized_img
def ibl_normalize(ibl, energy=30.0):
total_energy = np.sum(ibl)
if total_energy < 1e-3:
# print('small energy: ', total_energy)
h,w = ibl.shape
return np.zeros((h,w))
return ibl * energy / total_energy
def padding_mask(rgba_input: np.array):
""" Padding the mask input so that it fits the training dataset view range
If the rgba does not have enough padding area, we need to pad the area
:param rgba_input: H x W x 4 inputs, the first 3 channels are RGB, the last channel is the alpha
:returns: H x W x 4 padded RGBAD
"""
padding = 40
padding_size = 256 - padding * 2
h, w = rgba_input.shape[:2]
rgb = rgba_input[:, :, :3]
alpha = rgba_input[:, :, -1:]
zeros = np.where(alpha==0)
hh, ww = zeros[0], zeros[1]
h_min, h_max = hh.min(), hh.max()
w_min, w_max = ww.min(), ww.max()
# if the area already has enough padding
if h_max - h_min < padding_size and w_max - w_min < padding_size:
return rgba_input
padding_output = np.zeros((256, 256, 4))
padding_output[..., :3] = 1.0
padded_rgba = resize(rgba_input, padding_size)
new_h, new_w = padded_rgba.shape[:2]
padding_h = (256 - new_h) // 2
padding_w = (256 - new_w) // 2
padding_output[padding_h:padding_h+new_h, padding_w:padding_w+new_w, :] = padded_rgba
padding_output = np.clip(padding_output, 0.0, 1.0)
return padding_output
def shadow_composite(rgba, shadow, intensity, gamma):
rgb = rgba[..., :3]
mask = rgba[..., 3:]
if len(shadow.shape) == 2:
shadow = shadow[..., None]
new_shadow = 1.0 - shadow ** gamma * intensity
ret = rgb * mask + (1.0 - mask) * new_shadow
return ret, new_shadow[..., 0]
def render_btn_fn(mask, ibl):
global cur_rgba, cur_shadow, cur_gamma, cur_intensity
print("Button clicked!")
mask = mask / 255.0
ibl = ibl/ 255.0
mask = np.clip(mask, 0.0, 1.0)
# smoothing ibl
ibl = cv2.GaussianBlur(ibl, (11, 11), 0)
# padding mask
mask = padding_mask(mask)
cur_rgba = np.copy(mask)
print('mask shape: {}/{}/{}/{}, ibl shape: {}/{}/{}/{}'.format(mask.shape, mask.dtype, mask.min(), mask.max(),
ibl.shape, ibl.dtype, ibl.min(), ibl.max()))
# ret = np.random.randn(256, 256, 3)
# ret = (ret - ret.min()) / (ret.max() - ret.min() + 1e-8)
rgb, mask = mask[..., :3], mask[..., 3]
ibl = ibl_normalize(cv2.resize(ibl, (32, 16)))
# ibl = 1.0 - ibl
x = {
'mask': mask,
'ibl': ibl
}
shadow = model.inference(x)
cur_shadow = np.copy(shadow)
ret, shadow = shadow_composite(cur_rgba, shadow, cur_intensity, cur_gamma)
# print('IBL range: {}/{} Shadow range: {} {}'.format(ibl.min(), ibl.max(), shadow.min(), shadow.max()))
return ret, shadow
def intensity_change(x):
global cur_rgba, cur_shadow, cur_gamma, cur_intensity
cur_intensity = x
ret, shadow = shadow_composite(cur_rgba, cur_shadow, cur_intensity, cur_gamma)
return ret, shadow
def gamma_change(x):
global cur_rgba, cur_shadow, cur_gamma, cur_intensity
cur_gamma = x
ret, shadow = shadow_composite(cur_rgba, cur_shadow, cur_intensity, cur_gamma)
return ret, shadow
def update_input(mask):
return mask
ibl_h = 128
ibl_w = ibl_h * 2
with gr.Blocks() as demo:
with gr.Row():
mask_input = gr.Image(shape=None, width=256, height=256,image_mode="RGBA", label="RGBA")
ibl_input = gr.Sketchpad(shape=(ibl_w, ibl_h), image_mode="L", label="IBL", tool='sketch', invert_colors=True)
output = gr.Image(shape=(256, 256), height=256, width=256, image_mode="RGB", label="Output")
shadow_output = gr.Image(shape=(256, 256), height=256, width=256, image_mode="L", label="Shadow Layer")
with gr.Row():
intensity_slider = gr.Slider(0.0, 1.0, value=DEFAULT_INTENSITY, step=0.1, label="Intensity", info="Choose between 0.0 and 1.0")
gamma_slider = gr.Slider(1.0, 4.0, value=DEFAULT_GAMMA, step=0.1, label="Gamma", info="Gamma correction for shadow")
render_btn = gr.Button(label="Render")
with gr.Row():
gr.Examples(
examples=[['imgs/woman.png'],['imgs/man.png'], ['imgs/plant1.png'], ['imgs/human2.png'], ['imgs/cloud.png']],
fn=update_input,
inputs=[mask_input],
outputs=mask_input
)
render_btn.click(render_btn_fn, inputs=[mask_input, ibl_input], outputs=[output, shadow_output])
intensity_slider.release(intensity_change, inputs=[intensity_slider], outputs=[output, shadow_output])
gamma_slider.release(gamma_change, inputs=[gamma_slider], outputs=[output, shadow_output])
logging.info('Finished')
demo.launch()