import torch import torch.nn as nn import torch.nn.functional as F from torchvision import utils from collections import OrderedDict from .abs_model import abs_model from .blocks import * from .Loss.Loss import avg_norm_loss class Template(abs_model): """ Standard Unet Implementation src: https://arxiv.org/pdf/1505.04597.pdf """ def __init__(self, opt): resunet = opt['model']['resunet'] out_act = opt['model']['out_act'] norm_type = opt['model']['norm_type'] in_channels = opt['model']['in_channels'] out_channels = opt['model']['out_channels'] self.ncols = opt['hyper_params']['n_cols'] self.model = Unet(in_channels=in_channels, out_channels=out_channels, norm_type=norm_type, out_act=out_act, resunet=resunet) self.optimizer = get_optimizer(opt, self.model) self.visualization = {} def setup_input(self, x): return x def forward(self, x): return self.model(x) def compute_loss(self, y, pred): return avg_norm_loss(y, pred) def supervise(self, input_x, y, is_training:bool)->float: optimizer = self.optimizer model = self.model optimizer.zero_grad() pred = model(input_x) loss = self.compute_loss(y, pred) if is_training: loss.backward() optimizer.step() self.visualization['y'] = pred.detach() self.visualization['pred'] = pred.detach() return loss.item() def get_visualize(self) -> OrderedDict: """ Convert to visualization numpy array """ nrows = self.ncols visualizations = self.visualization ret_vis = OrderedDict() for k, v in visualizations.items(): batch = v.shape[0] n = min(nrows, batch) plot_v = v[:n] ret_vis[k] = utils.make_grid(plot_v.cpu(), nrow=nrows).numpy().transpose(1,2,0) return ret_vis def inference(self, x): # TODO pass def batch_inference(self, x): # TODO pass """ Getter & Setter """ def get_models(self) -> dict: return {'model': self.model} def get_optimizers(self) -> dict: return {'optimizer': self.optimizer} def set_models(self, models: dict) : # input test if 'model' not in models.keys(): raise ValueError('{} not in self.model'.format('model')) self.model = models['model'] def set_optimizers(self, optimizer: dict): self.optimizer = optimizer['optimizer'] #################### # Personal Methods # ####################