Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from inspect import isfunction | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange, repeat | |
from pdb import set_trace as st | |
from ldm.modules.attention import MemoryEfficientCrossAttention | |
from .dit_models_xformers import DiT, get_2d_sincos_pos_embed, ImageCondDiTBlock, FinalLayer, CaptionEmbedder, approx_gelu, ImageCondDiTBlockPixelArt, t2i_modulate, ImageCondDiTBlockPixelArtRMSNorm, T2IFinalLayer, ImageCondDiTBlockPixelArtRMSNormNoClip | |
from timm.models.vision_transformer import Mlp | |
try: | |
from apex.normalization import FusedLayerNorm as LayerNorm | |
from apex.normalization import FusedRMSNorm as RMSNorm | |
except: | |
from torch.nn import LayerNorm | |
from dit.norm import RMSNorm | |
# from vit.vit_triplane import XYZPosEmbed | |
class DiT_I23D(DiT): | |
# DiT with 3D_aware operations | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
pooling_ctx_dim=768, | |
roll_out=False, | |
vit_blk=ImageCondDiTBlock, | |
final_layer_blk=T2IFinalLayer, | |
): | |
# st() | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
mixed_prediction, context_dim, roll_out, vit_blk, | |
T2IFinalLayer) | |
assert self.roll_out | |
# if context_dim is not None: | |
# self.dino_proj = CaptionEmbedder(context_dim, | |
self.clip_ctx_dim = 1024 # vit-l | |
# self.dino_proj = CaptionEmbedder(self.clip_ctx_dim, # ! dino-vitl/14 here, for img-cond | |
self.dino_proj = CaptionEmbedder(context_dim, # ! dino-vitb/14 here, for MV-cond. hard coded for now... | |
# self.dino_proj = CaptionEmbedder(1024, # ! dino-vitb/14 here, for MV-cond. hard coded for now... | |
hidden_size, | |
act_layer=approx_gelu) | |
self.clip_spatial_proj = CaptionEmbedder(1024, # clip_I-L | |
hidden_size, | |
act_layer=approx_gelu) | |
def init_PE_3D_aware(self): | |
self.pos_embed = nn.Parameter(torch.zeros( | |
1, self.plane_n * self.x_embedder.num_patches, self.embed_dim), | |
requires_grad=False) | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
p = int(self.x_embedder.num_patches**0.5) | |
D = self.pos_embed.shape[-1] | |
grid_size = (self.plane_n, p * p) # B n HW C | |
pos_embed = get_2d_sincos_pos_embed(D, grid_size).reshape( | |
self.plane_n * p * p, D) # H*W, D | |
self.pos_embed.data.copy_( | |
torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
def initialize_weights(self): | |
super().initialize_weights() | |
# ! add 3d-aware PE | |
self.init_PE_3D_aware() | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert isinstance(context, dict) | |
# context = self.clip_text_proj(context) | |
clip_cls_token = self.clip_text_proj(context['vector']) | |
clip_spatial_token, dino_spatial_token = context['crossattn'][..., :self.clip_ctx_dim], self.dino_proj(context['crossattn'][..., self.clip_ctx_dim:]) | |
t = self.t_embedder(timesteps) + clip_cls_token # (N, D) | |
# ! todo, return spatial clip features. | |
# if self.roll_out: # ! | |
x = rearrange(x, 'b (c n) h w->(b n) c h w', | |
n=3) # downsample with same conv | |
x = self.x_embedder(x) # (b n) c h/f w/f | |
x = rearrange(x, '(b n) l c -> b (n l) c', n=3) | |
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
# if self.roll_out: # ! roll-out in the L dim, not B dim. add condition to all tokens. | |
# x = rearrange(x, '(b n) l c ->b (n l) c', n=3) | |
# assert context.ndim == 2 | |
# if isinstance(context, dict): | |
# context = context['crossattn'] # sgm conditioner compat | |
# c = t + context | |
# else: | |
# c = t # BS 1024 | |
for blk_idx, block in enumerate(self.blocks): | |
x = block(x, t, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D) | |
# todo later | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3) | |
# x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3) | |
# cast to float32 for better accuracy | |
x = x.to(torch.float32).contiguous() | |
return x | |
# ! compat issue | |
def forward_with_cfg(self, x, t, context, cfg_scale): | |
""" | |
Forward pass of SiT, but also batches the unconSiTional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
# half = x[: len(x) // 2] | |
# combined = torch.cat([half, half], dim=0) | |
eps = self.forward(x, t, context) | |
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
# eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return eps | |
class DiT_I23D_PixelArt(DiT_I23D): | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
pooling_ctx_dim=768, | |
roll_out=False, | |
vit_blk=ImageCondDiTBlockPixelArtRMSNorm, | |
final_layer_blk=FinalLayer, | |
): | |
# st() | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
# mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt, | |
mixed_prediction, context_dim, pooling_ctx_dim, roll_out, vit_blk, | |
final_layer_blk) | |
# ! a shared one | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) | |
# ! single | |
nn.init.constant_(self.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.adaLN_modulation[-1].bias, 0) | |
del self.clip_text_proj | |
self.cap_embedder = nn.Sequential( # TODO, init with zero here. | |
LayerNorm(pooling_ctx_dim), | |
nn.Linear( | |
pooling_ctx_dim, | |
hidden_size, | |
), | |
) | |
nn.init.constant_(self.cap_embedder[-1].weight, 0) | |
nn.init.constant_(self.cap_embedder[-1].bias, 0) | |
print(self) # check model arch | |
self.attention_y_norm = RMSNorm( | |
1024, eps=1e-5 | |
) # https://github.com/Alpha-VLLM/Lumina-T2X/blob/0c8dd6a07a3b7c18da3d91f37b1e00e7ae661293/lumina_t2i/models/model.py#L570C9-L570C61 | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert isinstance(context, dict) | |
# context = self.clip_text_proj(context) | |
clip_cls_token = self.cap_embedder(context['vector']) | |
clip_spatial_token, dino_spatial_token = context['crossattn'][..., :self.clip_ctx_dim], self.dino_proj(context['crossattn'][..., self.clip_ctx_dim:]) | |
clip_spatial_token = self.attention_y_norm(clip_spatial_token) # avoid re-normalization in each blk | |
t = self.t_embedder(timesteps) + clip_cls_token # (N, D) | |
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 | |
# if self.roll_out: # ! | |
x = rearrange(x, 'b (c n) h w->(b n) c h w', | |
n=3) # downsample with same conv | |
x = self.x_embedder(x) # (b n) c h/f w/f | |
x = rearrange(x, '(b n) l c -> b (n l) c', n=3) | |
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
# if self.roll_out: # ! roll-out in the L dim, not B dim. add condition to all tokens. | |
# x = rearrange(x, '(b n) l c ->b (n l) c', n=3) | |
# assert context.ndim == 2 | |
# if isinstance(context, dict): | |
# context = context['crossattn'] # sgm conditioner compat | |
# c = t + context | |
# else: | |
# c = t # BS 1024 | |
for blk_idx, block in enumerate(self.blocks): | |
x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D) | |
# todo later | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3) | |
# x = rearrange(x, 'b n) c h w -> b (n c) h w', n=3) | |
# cast to float32 for better accuracy | |
x = x.to(torch.float32).contiguous() | |
return x | |
class DiT_I23D_PixelArt_MVCond(DiT_I23D_PixelArt): | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
pooling_ctx_dim=768, | |
roll_out=False, | |
vit_blk=ImageCondDiTBlockPixelArt, | |
final_layer_blk=FinalLayer, | |
): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
# mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt, | |
mixed_prediction, context_dim, | |
pooling_ctx_dim, roll_out, ImageCondDiTBlockPixelArtRMSNorm, | |
final_layer_blk) | |
# support multi-view img condition | |
# DINO handles global pooling here; clip takes care of camera-cond with ModLN | |
# Input DINO concat also + global pool. InstantMesh adopts DINO (but CA). | |
# expected: support dynamic numbers of frames? since CA, shall be capable of. Any number of context window size. | |
del self.dino_proj | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert isinstance(context, dict) | |
# st() | |
# (Pdb) p context.keys() | |
# dict_keys(['crossattn', 'vector', 'concat']) | |
# (Pdb) p context['vector'].shape | |
# torch.Size([2, 768]) | |
# (Pdb) p context['crossattn'].shape | |
# torch.Size([2, 256, 1024]) | |
# (Pdb) p context['concat'].shape | |
# torch.Size([2, 4, 256, 768]) # mv dino spatial features | |
# ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj) | |
# DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk) | |
clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit | |
dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features. | |
t = self.t_embedder(timesteps) + clip_cls_token # (N, D) | |
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 | |
# if self.roll_out: # ! | |
x = rearrange(x, 'b (c n) h w->(b n) c h w', | |
n=3) # downsample with same conv | |
x = self.x_embedder(x) # (b n) c h/f w/f | |
x = rearrange(x, '(b n) l c -> b (n l) c', n=3) | |
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
for blk_idx, block in enumerate(self.blocks): | |
# x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D) | |
# ! DINO tokens for CA, CLIP tokens for append here. | |
x = block(x, t0, dino_spatial_token=clip_spatial_token, clip_spatial_token=dino_spatial_token) # (N, T, D) | |
# todo later | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3) | |
x = x.to(torch.float32).contiguous() | |
return x | |
class DiT_I23D_PixelArt_MVCond_noClip(DiT_I23D_PixelArt): | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
pooling_ctx_dim=768, | |
roll_out=False, | |
vit_blk=ImageCondDiTBlockPixelArt, | |
final_layer_blk=FinalLayer, | |
): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
# mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt, | |
mixed_prediction, context_dim, | |
pooling_ctx_dim, roll_out, | |
ImageCondDiTBlockPixelArtRMSNormNoClip, | |
final_layer_blk) | |
# support multi-view img condition | |
# DINO handles global pooling here; clip takes care of camera-cond with ModLN | |
# Input DINO concat also + global pool. InstantMesh adopts DINO (but CA). | |
# expected: support dynamic numbers of frames? since CA, shall be capable of. Any number of context window size. | |
del self.dino_proj | |
del self.clip_spatial_proj, self.cap_embedder # no clip required | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert isinstance(context, dict) | |
# st() | |
# (Pdb) p context.keys() | |
# dict_keys(['crossattn', 'vector', 'concat']) | |
# (Pdb) p context['vector'].shape | |
# torch.Size([2, 768]) | |
# (Pdb) p context['crossattn'].shape | |
# torch.Size([2, 256, 1024]) | |
# (Pdb) p context['concat'].shape | |
# torch.Size([2, 4, 256, 768]) # mv dino spatial features | |
# ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj) | |
# DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk) | |
# clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit | |
dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features. | |
# t = self.t_embedder(timesteps) + clip_cls_token # (N, D) | |
t = self.t_embedder(timesteps) | |
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 | |
# if self.roll_out: # ! | |
x = rearrange(x, 'b (c n) h w->(b n) c h w', | |
n=3) # downsample with same conv | |
x = self.x_embedder(x) # (b n) c h/f w/f | |
x = rearrange(x, '(b n) l c -> b (n l) c', n=3) | |
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
for blk_idx, block in enumerate(self.blocks): | |
# x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D) | |
# ! DINO tokens for CA, CLIP tokens for append here. | |
x = block(x, t0, dino_spatial_token=dino_spatial_token) # (N, T, D) | |
# todo later | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, 'b (n l) c ->(b n) l c', n=3) | |
x = self.unpatchify(x) # (N, out_channels, H, W) | |
if self.roll_out: # move n from L to B axis | |
x = rearrange(x, '(b n) c h w -> b (c n) h w', n=3) | |
x = x.to(torch.float32).contiguous() | |
return x | |
# pcd-structured latent ddpm | |
class DiT_pcd_I23D_PixelArt_MVCond(DiT_I23D_PixelArt_MVCond): | |
def __init__( | |
self, | |
input_size=32, | |
patch_size=2, | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
mixing_logit_init=-3, | |
mixed_prediction=True, | |
context_dim=False, | |
pooling_ctx_dim=768, | |
roll_out=False, | |
vit_blk=ImageCondDiTBlockPixelArt, | |
final_layer_blk=FinalLayer, | |
): | |
super().__init__(input_size, patch_size, in_channels, hidden_size, | |
depth, num_heads, mlp_ratio, class_dropout_prob, | |
num_classes, learn_sigma, mixing_logit_init, | |
# mixed_prediction, context_dim, roll_out, ImageCondDiTBlockPixelArt, | |
mixed_prediction, context_dim, | |
pooling_ctx_dim, | |
roll_out, ImageCondDiTBlockPixelArtRMSNorm, | |
final_layer_blk) | |
# ! first, normalize xyz from [-0.45,0.45] to [-1,1] | |
# Then, encode xyz with point fourier feat + MLP projection, serves as PE here. | |
# a separate MLP for the KL feature | |
# add them together in the feature space | |
# use a single MLP (final_layer) to map them back to 16 + 3 dims. | |
self.x_embedder = Mlp(in_features=in_channels, | |
hidden_features=hidden_size, | |
out_features=hidden_size, | |
act_layer=approx_gelu, | |
drop=0) | |
del self.pos_embed | |
def forward(self, | |
x, | |
timesteps=None, | |
context=None, | |
y=None, | |
get_attr='', | |
**kwargs): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# t = timesteps | |
assert isinstance(context, dict) | |
# st() | |
# (Pdb) p context.keys() | |
# dict_keys(['crossattn', 'vector', 'concat']) | |
# (Pdb) p context['vector'].shape | |
# torch.Size([2, 768]) | |
# (Pdb) p context['crossattn'].shape | |
# torch.Size([2, 256, 1024]) | |
# (Pdb) p context['concat'].shape | |
# torch.Size([2, 4, 256, 768]) # mv dino spatial features | |
# ! clip spatial tokens for append self-attn, thus add a projection layer (self.dino_proj) | |
# DINO features sent via crossattn, thus no proj required (already KV linear layers in crossattn blk) | |
clip_cls_token, clip_spatial_token = self.cap_embedder(context['vector']), self.clip_spatial_proj(context['crossattn']) # no norm here required? QK norm is enough, since self.ln_post(x) in vit | |
dino_spatial_token = rearrange(context['concat'], 'b v l c -> b (v l) c') # flatten MV dino features. | |
t = self.t_embedder(timesteps) + clip_cls_token # (N, D) | |
t0 = self.adaLN_modulation(t) # single-adaLN, B 6144 | |
x = self.x_embedder(x) | |
for blk_idx, block in enumerate(self.blocks): | |
# x = block(x, t0, dino_spatial_token=dino_spatial_token, clip_spatial_token=clip_spatial_token) # (N, T, D) | |
# ! DINO tokens for CA, CLIP tokens for append here. | |
x = block(x, t0, dino_spatial_token=clip_spatial_token, clip_spatial_token=dino_spatial_token) # (N, T, D) | |
# todo later | |
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) | |
x = x.to(torch.float32).contiguous() | |
return x | |
################################################################################# | |
# DiT_I23D Configs # | |
################################################################################# | |
def DiT_XL_2(**kwargs): | |
return DiT_I23D(depth=28, | |
hidden_size=1152, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_L_2(**kwargs): | |
return DiT_I23D(depth=24, | |
hidden_size=1024, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_B_2(**kwargs): | |
return DiT_I23D(depth=12, | |
hidden_size=768, | |
patch_size=2, | |
num_heads=12, | |
**kwargs) | |
def DiT_B_1(**kwargs): | |
return DiT_I23D(depth=12, | |
hidden_size=768, | |
patch_size=1, | |
num_heads=12, | |
**kwargs) | |
def DiT_L_Pixelart_2(**kwargs): | |
return DiT_I23D_PixelArt(depth=24, | |
hidden_size=1024, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_B_Pixelart_2(**kwargs): | |
return DiT_I23D_PixelArt(depth=12, | |
hidden_size=768, | |
patch_size=2, | |
num_heads=12, | |
**kwargs) | |
def DiT_L_Pixelart_MV_2(**kwargs): | |
return DiT_I23D_PixelArt_MVCond(depth=24, | |
hidden_size=1024, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_L_Pixelart_MV_2_noclip(**kwargs): | |
return DiT_I23D_PixelArt_MVCond_noClip(depth=24, | |
hidden_size=1024, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_XL_Pixelart_MV_2(**kwargs): | |
return DiT_I23D_PixelArt_MVCond(depth=28, | |
hidden_size=1152, | |
patch_size=2, | |
num_heads=16, | |
**kwargs) | |
def DiT_B_Pixelart_MV_2(**kwargs): | |
return DiT_I23D_PixelArt_MVCond(depth=12, | |
hidden_size=768, | |
patch_size=2, | |
num_heads=12, | |
**kwargs) | |
# pcd latent | |
def DiT_L_Pixelart_MV_pcd(**kwargs): | |
return DiT_pcd_I23D_PixelArt_MVCond(depth=24, | |
hidden_size=1024, | |
patch_size=1, # no spatial compression here | |
num_heads=16, | |
**kwargs) | |
DiT_models = { | |
'DiT-XL/2': DiT_XL_2, | |
'DiT-L/2': DiT_L_2, | |
'DiT-B/2': DiT_B_2, | |
'DiT-B/1': DiT_B_1, | |
'DiT-PixArt-L/2': DiT_L_Pixelart_2, | |
'DiT-PixArt-MV-XL/2': DiT_XL_Pixelart_MV_2, | |
# 'DiT-PixArt-MV-L/2': DiT_L_Pixelart_MV_2, | |
'DiT-PixArt-MV-L/2': DiT_L_Pixelart_MV_2_noclip, | |
'DiT-PixArt-MV-PCD-L': DiT_L_Pixelart_MV_pcd, | |
'DiT-PixArt-MV-B/2': DiT_B_Pixelart_MV_2, | |
'DiT-PixArt-B/2': DiT_B_Pixelart_2, | |
} | |