Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
# import numpy as np | |
# import math | |
# from timm.models.vision_transformer import PatchEmbed, Attention, Mlp | |
from .dit_models import TimestepEmbedder, LabelEmbedder, DiTBlock, get_2d_sincos_pos_embed | |
class DiTwoEmbedder(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone, performing directly on the ViT token latents rather than spatial latents. | |
""" | |
def __init__( | |
self, | |
input_size=224, # raw img input size | |
# patch_size=14, # dino version | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
): | |
super().__init__() | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.patch_size = 14 # dino-v2 patch sized fixed in this project | |
self.num_heads = num_heads | |
# self.x_embedder = PatchEmbed(input_size, | |
# patch_size, | |
# in_channels, | |
# hidden_size, | |
# bias=True) | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
if num_classes > 0: | |
self.y_embedder = LabelEmbedder(num_classes, hidden_size, | |
class_dropout_prob) | |
else: | |
self.y_embedder = None | |
# num_patches = self.x_embedder.num_patches # 14*14*3 | |
self.num_patches = (input_size // self.patch_size)**2 | |
# Will use fixed sin-cos embedding: | |
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, | |
hidden_size), | |
requires_grad=False) | |
self.blocks = nn.ModuleList([ | |
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) | |
for _ in range(depth) | |
]) | |
# self.final_layer = FinalLayer(hidden_size, patch_size, | |
# self.out_channels) | |
self.initialize_weights() | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], | |
int(self.num_patches**0.5)) | |
# st() | |
self.pos_embed.data.copy_( | |
torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
# w = self.x_embedder.proj.weight.data | |
# nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
# nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize label embedding table: | |
if self.y_embedder is not None: | |
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
# nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
# nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
# nn.init.constant_(self.final_layer.linear.weight, 0) | |
# nn.init.constant_(self.final_layer.linear.bias, 0) | |
def forward(self, x, t, y=None): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# ! no embedder operation | |
# x = self.x_embedder( | |
# x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
x = x + self.pos_embed | |
t = self.t_embedder(t) # (N, D) | |
if self.y_embedder is not None: | |
assert y is not None | |
y = self.y_embedder(y, self.training) # (N, D) | |
c = t + y # (N, D) | |
else: | |
c = t | |
for block in self.blocks: | |
x = block(x, c) # (N, T, D) | |
# x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) | |
# x = self.unpatchify(x) # (N, out_channels, H, W) | |
return x | |
def forward_with_cfg(self, x, t, y, cfg_scale): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
half = x[:len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
model_out = self.forward(combined, t, y) | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
def forward_with_cfg_unconditional(self, x, t, y=None, cfg_scale=None): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
combined = x | |
model_out = self.forward(combined, t, y) | |
return model_out | |
class DiTwoEmbedderLongSkipConnection(nn.Module): | |
def __init__( | |
self, | |
input_size=224, # raw img input size | |
patch_size=14, # dino version | |
in_channels=4, | |
hidden_size=1152, | |
depth=28, | |
num_heads=16, | |
mlp_ratio=4.0, | |
class_dropout_prob=0.1, | |
num_classes=1000, | |
learn_sigma=True, | |
): | |
"""DiT with long skip-connections from U-ViT, CVPR 23' | |
""" | |
super().__init__() | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.patch_size = patch_size | |
self.num_heads = num_heads | |
self.t_embedder = TimestepEmbedder(hidden_size) | |
if num_classes > 0: | |
self.y_embedder = LabelEmbedder(num_classes, hidden_size, | |
class_dropout_prob) | |
else: | |
self.y_embedder = None | |
# num_patches = self.x_embedder.num_patches # 14*14*3 | |
self.num_patches = (input_size // patch_size)**2 | |
# Will use fixed sin-cos embedding: | |
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, | |
hidden_size), | |
requires_grad=False) | |
self.blocks = nn.ModuleList([ | |
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) | |
for _ in range(depth) | |
]) | |
# ! add long-skip-connections from U-ViT | |
self.in_blocks = nn.ModuleList([ | |
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) | |
for _ in range(depth // 2) | |
]) | |
self.mid_block = DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) | |
self.out_blocks = nn.ModuleList([ | |
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) | |
for _ in range(depth // 2) | |
]) | |
# ! needed or to be replaced? | |
# self.final_layer = FinalLayer(hidden_size, patch_size, | |
# self.out_channels) | |
self.initialize_weights() | |
def initialize_weights(self): | |
# Initialize transformer layers: | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize (and freeze) pos_embed by sin-cos embedding: | |
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], | |
int(self.num_patches**0.5)) | |
# st() | |
self.pos_embed.data.copy_( | |
torch.from_numpy(pos_embed).float().unsqueeze(0)) | |
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d): | |
# w = self.x_embedder.proj.weight.data | |
# nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
# nn.init.constant_(self.x_embedder.proj.bias, 0) | |
# Initialize label embedding table: | |
if self.y_embedder is not None: | |
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) | |
# Initialize timestep embedding MLP: | |
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers in DiT blocks: | |
for block in self.blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers: | |
# nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
# nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
# nn.init.constant_(self.final_layer.linear.weight, 0) | |
# nn.init.constant_(self.final_layer.linear.bias, 0) | |
def forward(self, x, t, y=None): | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
# ! no embedder operation | |
# x = self.x_embedder( | |
# x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 | |
x = x + self.pos_embed | |
t = self.t_embedder(t) # (N, D) | |
if self.y_embedder is not None: | |
assert y is not None | |
y = self.y_embedder(y, self.training) # (N, D) | |
c = t + y # (N, D) | |
else: | |
c = t | |
# ! add long-skip-connections here | |
# for block in self.blocks: | |
# x = block(x, c) # (N, T, D) | |
skips = [] | |
for blk in self.in_blocks: | |
x = blk(x) | |
skips.append(x) | |
x = self.mid_block(x) | |
for blk in self.out_blocks: | |
x = blk(x, skips.pop()) | |
# ! the order of unpatchify and final_linear swaps in the baseline implementation | |
# x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) | |
# x = self.unpatchify(x) # (N, out_channels, H, W) | |
return x | |
def forward_with_cfg(self, x, t, y, cfg_scale): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
half = x[:len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
model_out = self.forward(combined, t, y) | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
def forward_with_cfg_unconditional(self, x, t, y=None, cfg_scale=None): | |
""" | |
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
combined = x | |
model_out = self.forward(combined, t, y) | |
return model_out | |
################################################################################# | |
# DiT Configs # | |
################################################################################# | |
# def DiT_XL_2(**kwargs): | |
# return DiT(depth=28, | |
# hidden_size=1152, | |
# patch_size=2, | |
# num_heads=16, | |
# **kwargs) | |
# def DiT_XL_4(**kwargs): | |
# return DiT(depth=28, | |
# hidden_size=1152, | |
# patch_size=4, | |
# num_heads=16, | |
# **kwargs) | |
# def DiT_XL_8(**kwargs): | |
# return DiT(depth=28, | |
# hidden_size=1152, | |
# patch_size=8, | |
# num_heads=16, | |
# **kwargs) | |
# def DiT_L_2(**kwargs): | |
# return DiT(depth=24, | |
# hidden_size=1024, | |
# patch_size=2, | |
# num_heads=16, | |
# **kwargs) | |
# def DiT_L_4(**kwargs): | |
# return DiT(depth=24, | |
# hidden_size=1024, | |
# patch_size=4, | |
# num_heads=16, | |
# **kwargs) | |
# def DiT_L_8(**kwargs): | |
# return DiT(depth=24, | |
# hidden_size=1024, | |
# patch_size=8, | |
# num_heads=16, | |
# **kwargs) | |
# def DiT_B_2(**kwargs): | |
# return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) | |
# def DiT_B_4(**kwargs): | |
# return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) | |
# def DiT_B_8(**kwargs): | |
# return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) | |
# def DiT_B_16(**kwargs): # ours cfg | |
# return DiT(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs) | |
# def DiT_S_2(**kwargs): | |
# return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) | |
# def DiT_S_4(**kwargs): | |
# return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) | |
# def DiT_S_8(**kwargs): | |
# return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) | |
def DiT_woembed_S(**kwargs): | |
return DiTwoEmbedder(depth=12, hidden_size=384, num_heads=6, **kwargs) | |
def DiT_woembed_B(**kwargs): | |
return DiTwoEmbedder(depth=12, hidden_size=768, num_heads=12, **kwargs) | |
def DiT_woembed_L(**kwargs): | |
return DiTwoEmbedder( | |
depth=24, | |
hidden_size=1024, | |
num_heads=16, | |
**kwargs) | |
DiT_woembed_models = { | |
# 'DiT-XL/2': DiT_XL_2, | |
# 'DiT-XL/4': DiT_XL_4, | |
# 'DiT-XL/8': DiT_XL_8, | |
# 'DiT-L/2': DiT_L_2, | |
# 'DiT-L/4': DiT_L_4, | |
# 'DiT-L/8': DiT_L_8, | |
# 'DiT-B/2': DiT_B_2, | |
# 'DiT-B/4': DiT_B_4, | |
# 'DiT-B/8': DiT_B_8, | |
# 'DiT-B/16': DiT_B_16, | |
# 'DiT-S/2': DiT_S_2, | |
# 'DiT-S/4': DiT_S_4, | |
# 'DiT-S/8': DiT_S_8, | |
'DiT-wo-S': DiT_woembed_S, | |
'DiT-wo-B': DiT_woembed_B, | |
'DiT-wo-L': DiT_woembed_L, | |
} | |