wzhouxiff
init
38e3f9b
import torch
from typing import Optional
from diffusers.models.attention import TemporalBasicTransformerBlock, _chunked_feed_forward
from diffusers.utils.torch_utils import maybe_allow_in_graph
@maybe_allow_in_graph
class TemporalPoseCondTransformerBlock(TemporalBasicTransformerBlock):
def forward(
self,
hidden_states: torch.FloatTensor, # [bs * num_frame, h * w, c]
num_frames: int,
encoder_hidden_states: Optional[torch.FloatTensor] = None, # [bs * h * w, 1, c]
pose_feature: Optional[torch.FloatTensor] = None, # [bs, c, n_frame, h, w]
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_frames, seq_length, channels = hidden_states.shape
batch_size = batch_frames // num_frames
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
hidden_states = hidden_states.permute(0, 2, 1, 3)
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) # [bs * h * w, frame, c]
residual = hidden_states
hidden_states = self.norm_in(hidden_states)
if self._chunk_size is not None:
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
else:
hidden_states = self.ff_in(hidden_states)
if self.is_res:
hidden_states = hidden_states + residual
norm_hidden_states = self.norm1(hidden_states)
pose_feature = pose_feature.permute(0, 3, 4, 2, 1).reshape(batch_size * seq_length, num_frames, -1)
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None, pose_feature=pose_feature)
hidden_states = attn_output + hidden_states
# 3. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, pose_feature=pose_feature)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self._chunk_size is not None:
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
if self.is_res:
hidden_states = ff_output + hidden_states
else:
hidden_states = ff_output
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
hidden_states = hidden_states.permute(0, 2, 1, 3)
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
return hidden_states