try: import spaces except: pass import os import gradio as gr import json import ast import torch from gradio_image_prompter import ImagePrompter from sam2.sam2_image_predictor import SAM2ImagePredictor from omegaconf import OmegaConf from PIL import Image, ImageDraw import numpy as np from copy import deepcopy import cv2 import torch.nn.functional as F import torchvision from einops import rearrange import tempfile from objctrl_2_5d.utils.ui_utils import process_image, get_camera_pose, get_subject_points, get_points, undo_points, mask_image, traj2cam, get_mid_params from ZoeDepth.zoedepth.utils.misc import colorize from cameractrl.inference import get_pipeline from objctrl_2_5d.utils.examples import examples, sync_points from objctrl_2_5d.utils.objmask_util import RT2Plucker, Unprojected, roll_with_ignore_multidim, dilate_mask_pytorch from objctrl_2_5d.utils.filter_utils import get_freq_filter, freq_mix_3d ### Title and Description ### #### Description #### title = r"""

ObjCtrl-2.5D: Training-free Object Control with Camera Poses

""" # subtitle = r"""

Deployed on SVD Generation

""" important_link = r"""
[Paper][Project Page][Code]
""" authors = r"""
Zhouxia WangYushi LanShanchen ZhouChen Change Loy
""" affiliation = r"""
S-Lab, NTU Singapore
""" description = r""" Official Gradio demo for ObjCtrl-2.5D: Training-free Object Control with Camera Poses.
🔥 ObjCtrl2.5D enables object motion control in a I2V generated video via transforming 2D trajectories to 3D using depth, subsequently converting them into camera poses, thereby leveraging the exisitng camera motion control module for object motion control without requiring additional training.
""" article = r""" If ObjCtrl2.5D is helpful, please help to ⭐ the Github Repo. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FMotionCtrl )](https://github.com/TencentARC/MotionCtrl) --- 📝 **Citation**
If our work is useful for your research, please consider citing: ```bibtex @inproceedings{wang2024motionctrl, title={Motionctrl: A unified and flexible motion controller for video generation}, author={Wang, Zhouxia and Yuan, Ziyang and Wang, Xintao and Li, Yaowei and Chen, Tianshui and Xia, Menghan and Luo, Ping and Shan, Ying}, booktitle={ACM SIGGRAPH 2024 Conference Papers}, pages={1--11}, year={2024} } ``` 📧 **Contact**
If you have any questions, please feel free to reach me out at zhouzi1212@gmail.com. """ # pre-defined parameters DEBUG = False if DEBUG: cur_OUTPUT_PATH = 'outputs/tmp' os.makedirs(cur_OUTPUT_PATH, exist_ok=True) # num_inference_steps=25 min_guidance_scale = 1.0 max_guidance_scale = 3.0 area_ratio = 0.3 depth_scale_ = 5.2 center_margin = 10 height, width = 320, 576 num_frames = 14 intrinsics = np.array([[float(width), float(width), float(width) / 2, float(height) / 2]]) intrinsics = np.repeat(intrinsics, num_frames, axis=0) # [n_frame, 4] fx = intrinsics[0, 0] / width fy = intrinsics[0, 1] / height cx = intrinsics[0, 2] / width cy = intrinsics[0, 3] / height down_scale = 8 H, W = height // down_scale, width // down_scale K = np.array([[width / down_scale, 0, W / 2], [0, width / down_scale, H / 2], [0, 0, 1]]) # -------------- initialization -------------- # CAMERA_MODE = ["Traj2Cam", "Rotate", "Clockwise", "Translate"] CAMERA_MODE = ["None", "ZoomIn", "ZoomOut", "PanRight", "PanLeft", "TiltUp", "TiltDown", "ClockWise", "Anti-CW", "Rotate60"] # select the device for computation if torch.cuda.is_available(): device = torch.device("cuda") elif torch.backends.mps.is_available(): device = torch.device("mps") else: device = torch.device("cpu") print(f"using device: {device}") # # segmentation model segmentor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny", cache_dir="ckpt", device=device) # depth model d_model_NK = torch.hub.load('./ZoeDepth', 'ZoeD_NK', source='local', pretrained=True).to(device) # cameractrl model config = "configs/svd_320_576_cameractrl.yaml" model_id = "stabilityai/stable-video-diffusion-img2vid" ckpt = "checkpoints/CameraCtrl_svd.ckpt" if not os.path.exists(ckpt): os.makedirs("checkpoints", exist_ok=True) os.system("wget -c https://huggingface.co/hehao13/CameraCtrl_SVD_ckpts/resolve/main/CameraCtrl_svd.ckpt?download=true") os.system("mv CameraCtrl_svd.ckpt?download=true checkpoints/CameraCtrl_svd.ckpt") model_config = OmegaConf.load(config) pipeline = get_pipeline(model_id, "unet", model_config['down_block_types'], model_config['up_block_types'], model_config['pose_encoder_kwargs'], model_config['attention_processor_kwargs'], ckpt, True, device) # segmentor = None # d_model_NK = None # pipeline = None ### run the demo ## @spaces.GPU(duration=5) def segment(canvas, image, logits): if logits is not None: logits *= 32.0 _, points = get_subject_points(canvas) image = np.array(image) with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): segmentor.set_image(image) input_points = [] input_boxes = [] for p in points: [x1, y1, _, x2, y2, _] = p if x2==0 and y2==0: input_points.append([x1, y1]) else: input_boxes.append([x1, y1, x2, y2]) if len(input_points) == 0: input_points = None input_labels = None else: input_points = np.array(input_points) input_labels = np.ones(len(input_points)) if len(input_boxes) == 0: input_boxes = None else: input_boxes = np.array(input_boxes) masks, _, logits = segmentor.predict( point_coords=input_points, point_labels=input_labels, box=input_boxes, multimask_output=False, return_logits=True, mask_input=logits, ) mask = masks > 0 masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9) masked_img = Image.fromarray(masked_img) return mask[0], {'image': masked_img, 'points': points}, logits / 32.0 @spaces.GPU(duration=80) def run_objctrl_2_5d(condition_image, mask, depth, RTs, bg_mode, shared_wapring_latents, scale_wise_masks, rescale, seed, ds, dt, num_inference_steps=25): seed = int(seed) center_h_margin, center_w_margin = center_margin, center_margin depth_center = np.mean(depth[height//2-center_h_margin:height//2+center_h_margin, width//2-center_w_margin:width//2+center_w_margin]) if rescale > 0: depth_rescale = round(depth_scale_ * rescale / depth_center, 2) else: depth_rescale = 1.0 depth = depth * depth_rescale depth_down = F.interpolate(torch.tensor(depth).unsqueeze(0).unsqueeze(0), (H, W), mode='bilinear', align_corners=False).squeeze().numpy() # [H, W] ## latent generator = torch.Generator() generator.manual_seed(seed) latents_org = pipeline.prepare_latents( 1, 14, 8, height, width, pipeline.dtype, device, generator, None, ) latents_org = latents_org / pipeline.scheduler.init_noise_sigma cur_plucker_embedding, _, _ = RT2Plucker(RTs, RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W cur_plucker_embedding = cur_plucker_embedding.to(device) cur_plucker_embedding = cur_plucker_embedding[None, ...] # b 6 f h w cur_plucker_embedding = cur_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w cur_plucker_embedding = cur_plucker_embedding[:, :num_frames, ...] cur_pose_features = pipeline.pose_encoder(cur_plucker_embedding) # bg_mode = ["Fixed", "Reverse", "Free"] if bg_mode == "Fixed": fix_RTs = np.repeat(RTs[0][None, ...], num_frames, axis=0) # [n_frame, 4, 3] fix_plucker_embedding, _, _ = RT2Plucker(fix_RTs, num_frames, (height, width), fx, fy, cx, cy) # 6, V, H, W fix_plucker_embedding = fix_plucker_embedding.to(device) fix_plucker_embedding = fix_plucker_embedding[None, ...] # b 6 f h w fix_plucker_embedding = fix_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w fix_plucker_embedding = fix_plucker_embedding[:, :num_frames, ...] fix_pose_features = pipeline.pose_encoder(fix_plucker_embedding) elif bg_mode == "Reverse": bg_plucker_embedding, _, _ = RT2Plucker(RTs[::-1], RTs.shape[0], (height, width), fx, fy, cx, cy) # 6, V, H, W bg_plucker_embedding = bg_plucker_embedding.to(device) bg_plucker_embedding = bg_plucker_embedding[None, ...] # b 6 f h w bg_plucker_embedding = bg_plucker_embedding.permute(0, 2, 1, 3, 4) # b f 6 h w bg_plucker_embedding = bg_plucker_embedding[:, :num_frames, ...] fix_pose_features = pipeline.pose_encoder(bg_plucker_embedding) else: fix_pose_features = None #### preparing mask mask = Image.fromarray(mask) mask = mask.resize((W, H)) mask = np.array(mask).astype(np.float32) mask = np.expand_dims(mask, axis=-1) # visulize mask if DEBUG: mask_sum_vis = mask[..., 0] mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8) mask_sum_vis = Image.fromarray(mask_sum_vis) mask_sum_vis.save(f'{cur_OUTPUT_PATH}/org_mask.png') try: warped_masks = Unprojected(mask, depth_down, RTs, H=H, W=W, K=K) warped_masks.insert(0, mask) except: # mask to bbox print(f'!!! Mask is too small to warp; mask to bbox') mask = mask[:, :, 0] coords = cv2.findNonZero(mask) x, y, w, h = cv2.boundingRect(coords) # mask[y:y+h, x:x+w] = 1.0 center_x, center_y = x + w // 2, y + h // 2 center_z = depth_down[center_y, center_x] # RTs [n_frame, 3, 4] to [n_frame, 4, 4] , add [0, 0, 0, 1] RTs = np.concatenate([RTs, np.array([[[0, 0, 0, 1]]] * num_frames)], axis=1) # RTs: world to camera P0 = np.array([center_x, center_y, 1]) Pc0 = np.linalg.inv(K) @ P0 * center_z pw = np.linalg.inv(RTs[0]) @ np.array([Pc0[0], Pc0[1], center_z, 1]) # [4] P = [np.array([center_x, center_y])] for i in range(1, num_frames): Pci = RTs[i] @ pw Pi = K @ Pci[:3] / Pci[2] P.append(Pi[:2]) warped_masks = [mask] for i in range(1, num_frames): shift_x = int(round(P[i][0] - P[0][0])) shift_y = int(round(P[i][1] - P[0][1])) cur_mask = roll_with_ignore_multidim(mask, [shift_y, shift_x]) warped_masks.append(cur_mask) warped_masks = [v[..., None] for v in warped_masks] warped_masks = np.stack(warped_masks, axis=0) # [f, h, w] warped_masks = np.repeat(warped_masks, 3, axis=-1) # [f, h, w, 3] mask_sum = np.sum(warped_masks, axis=0, keepdims=True) # [1, H, W, 3] mask_sum[mask_sum > 1.0] = 1.0 mask_sum = mask_sum[0,:,:, 0] if DEBUG: ## visulize warp mask warp_masks_vis = torch.tensor(warped_masks) warp_masks_vis = (warp_masks_vis * 255.0).to(torch.uint8) torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warped_masks.mp4', warp_masks_vis, fps=10, video_codec='h264', options={'crf': '10'}) # visulize mask mask_sum_vis = mask_sum mask_sum_vis = (mask_sum_vis * 255.0).astype(np.uint8) mask_sum_vis = Image.fromarray(mask_sum_vis) mask_sum_vis.save(f'{cur_OUTPUT_PATH}/merged_mask.png') if scale_wise_masks: min_area = H * W * area_ratio # cal in downscale non_zero_len = mask_sum.sum() print(f'non_zero_len: {non_zero_len}, min_area: {min_area}') if non_zero_len > min_area: kernel_sizes = [1, 1, 1, 3] elif non_zero_len > min_area * 0.5: kernel_sizes = [3, 1, 1, 5] else: kernel_sizes = [5, 3, 3, 7] else: kernel_sizes = [1, 1, 1, 1] mask = torch.from_numpy(mask_sum) # [h, w] mask = mask[None, None, ...] # [1, 1, h, w] mask = F.interpolate(mask, (height, width), mode='bilinear', align_corners=False) # [1, 1, H, W] # mask = mask.repeat(1, num_frames, 1, 1) # [1, f, H, W] mask = mask.to(pipeline.dtype).to(device) ##### Mask End ###### ### Got blending pose features Start ### pose_features = [] for i in range(0, len(cur_pose_features)): kernel_size = kernel_sizes[i] h, w = cur_pose_features[i].shape[-2:] if fix_pose_features is None: pose_features.append(torch.zeros_like(cur_pose_features[i])) else: pose_features.append(fix_pose_features[i]) cur_mask = F.interpolate(mask, (h, w), mode='bilinear', align_corners=False) cur_mask = dilate_mask_pytorch(cur_mask, kernel_size=kernel_size) # [1, 1, H, W] cur_mask = cur_mask.repeat(1, num_frames, 1, 1) # [1, f, H, W] if DEBUG: # visulize mask mask_vis = cur_mask[0, 0].cpu().numpy() * 255.0 mask_vis = Image.fromarray(mask_vis.astype(np.uint8)) mask_vis.save(f'{cur_OUTPUT_PATH}/mask_k{kernel_size}_scale{i}.png') cur_mask = cur_mask[None, ...] # [1, 1, f, H, W] pose_features[-1] = cur_pose_features[i] * cur_mask + pose_features[-1] * (1 - cur_mask) ### Got blending pose features End ### ##### Warp Noise Start ###### if shared_wapring_latents: noise = latents_org[0, 0].data.cpu().numpy().copy() #[14, 4, 40, 72] noise = np.transpose(noise, (1, 2, 0)) # [40, 72, 4] try: warp_noise = Unprojected(noise, depth_down, RTs, H=H, W=W, K=K) warp_noise.insert(0, noise) except: print(f'!!! Noise is too small to warp; mask to bbox') warp_noise = [noise] for i in range(1, num_frames): shift_x = int(round(P[i][0] - P[0][0])) shift_y = int(round(P[i][1] - P[0][1])) cur_noise= roll_with_ignore_multidim(noise, [shift_y, shift_x]) warp_noise.append(cur_noise) warp_noise = np.stack(warp_noise, axis=0) # [f, h, w, 4] if DEBUG: ## visulize warp noise warp_noise_vis = torch.tensor(warp_noise)[..., :3] * torch.tensor(warped_masks) warp_noise_vis = (warp_noise_vis - warp_noise_vis.min()) / (warp_noise_vis.max() - warp_noise_vis.min()) warp_noise_vis = (warp_noise_vis * 255.0).to(torch.uint8) torchvision.io.write_video(f'{cur_OUTPUT_PATH}/warp_noise.mp4', warp_noise_vis, fps=10, video_codec='h264', options={'crf': '10'}) warp_latents = torch.tensor(warp_noise).permute(0, 3, 1, 2).to(latents_org.device).to(latents_org.dtype) # [frame, 4, H, W] warp_latents = warp_latents.unsqueeze(0) # [1, frame, 4, H, W] warped_masks = torch.tensor(warped_masks).permute(0, 3, 1, 2).unsqueeze(0) # [1, frame, 3, H, W] mask_extend = torch.concat([warped_masks, warped_masks[:,:,0:1]], dim=2) # [1, frame, 4, H, W] mask_extend = mask_extend.to(latents_org.device).to(latents_org.dtype) warp_latents = warp_latents * mask_extend + latents_org * (1 - mask_extend) warp_latents = warp_latents.permute(0, 2, 1, 3, 4) random_noise = latents_org.clone().permute(0, 2, 1, 3, 4) filter_shape = warp_latents.shape freq_filter = get_freq_filter( filter_shape, device = device, filter_type='butterworth', n=4, d_s=ds, d_t=dt ) warp_latents = freq_mix_3d(warp_latents, random_noise, freq_filter) warp_latents = warp_latents.permute(0, 2, 1, 3, 4) else: warp_latents = latents_org.clone() generator.manual_seed(42) with torch.no_grad(): result = pipeline( image=condition_image, pose_embedding=cur_plucker_embedding, height=height, width=width, num_frames=num_frames, num_inference_steps=num_inference_steps, min_guidance_scale=min_guidance_scale, max_guidance_scale=max_guidance_scale, do_image_process=True, generator=generator, output_type='pt', pose_features= pose_features, latents = warp_latents ).frames[0].cpu() #[f, c, h, w] result = rearrange(result, 'f c h w -> f h w c') result = (result * 255.0).to(torch.uint8) video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name torchvision.io.write_video(video_path, result, fps=10, video_codec='h264', options={'crf': '8'}) return video_path # UI function @spaces.GPU(duration=5) def process_image(raw_image, trajectory_points): image, points = raw_image['image'], raw_image['points'] print(points) try: assert(len(points)) == 1, "Please draw only one bbox" [x1, y1, _, x2, y2, _] = points[0] image = image.crop((x1, y1, x2, y2)) image = image.resize((width, height)) except: image = image.resize((width, height)) depth = d_model_NK.infer_pil(image) colored_depth = colorize(depth, cmap='gray_r') # [h, w, 4] 0-255 depth_img = deepcopy(colored_depth[:, :, :3]) if len(trajectory_points) > 0: for idx, point in enumerate(trajectory_points): if idx % 2 == 0: cv2.circle(depth_img, tuple(point), 10, (255, 0, 0), -1) else: cv2.circle(depth_img, tuple(point), 10, (0, 0, 255), -1) if idx > 0: line_length = np.sqrt((trajectory_points[idx][0] - trajectory_points[idx-1][0])**2 + (trajectory_points[idx][1] - trajectory_points[idx-1][1])**2) arrow_head_length = 10 tip_length = arrow_head_length / line_length cv2.arrowedLine(depth_img, trajectory_points[idx-1], trajectory_points[idx], (0, 255, 0), 4, tipLength=tip_length) return image, {'image': image}, depth, depth_img, colored_depth[:, :, :3] def draw_points_on_image(img, points): # img = Image.fromarray(np.array(image)) draw = ImageDraw.Draw(img) for p in points: x1, y1, _, x2, y2, _ = p if x2 == 0 and y2 == 0: # Point: 青色点带黑边 point_radius = 4 draw.ellipse( (x1 - point_radius, y1 - point_radius, x1 + point_radius, y1 + point_radius), fill="cyan", outline="black", width=1 ) else: # Bounding Box: 黑色矩形框 draw.rectangle([x1, y1, x2, y2], outline="black", width=3) return img @spaces.GPU(duration=10) def from_examples(raw_input, raw_image_points, canvas, seg_image_points, selected_points_text, camera_option, mask_bk): selected_points = ast.literal_eval(selected_points_text) mask = np.array(mask_bk) mask = mask[:,:,0] > 0 selected_points = ast.literal_eval(selected_points_text) image, _, depth, depth_img, colored_depth = process_image(raw_input, selected_points) # get camera pose if camera_option == "None": # traj2came rescale = 1.0 camera_pose, camera_pose_vis, rescale, _ = traj2cam(selected_points, depth , rescale) else: rescale = 0.0 angle = 60 speed = 4.0 camera_pose, camera_pose_vis, rescale = get_camera_pose(CAMERA_MODE)(camera_option, depth, mask, rescale, angle, speed) raw_image_points = ast.literal_eval(raw_image_points) seg_image_points = ast.literal_eval(seg_image_points) raw_image = draw_points_on_image(raw_input['image'], raw_image_points) seg_image = draw_points_on_image(canvas['image'], seg_image_points) return image, mask, depth, depth_img, colored_depth, camera_pose, \ camera_pose_vis, rescale, selected_points, \ gr.update(value={'image': raw_image, 'points': raw_image_points}), \ gr.update(value={'image': seg_image, 'points': seg_image_points}), \ # -------------- UI definition -------------- with gr.Blocks() as demo: # layout definition gr.Markdown(title) gr.Markdown(authors) gr.Markdown(affiliation) gr.Markdown(important_link) gr.Markdown(description) # with gr.Row(): # gr.Markdown("""#
Repositioning the Subject within Image
""") mask = gr.State(value=None) # store mask mask_bk = gr.Image(type="pil", label="Mask", show_label=True, interactive=False, visible=False) removal_mask = gr.State(value=None) # store removal mask selected_points = gr.State([]) # store points selected_points_text = gr.Textbox(label="Selected Points", visible=False) raw_image_points = gr.Textbox(label="Raw Image Points", visible=False) seg_image_points = gr.Textbox(label="Segment Image Points", visible=False) original_image = gr.State(value=None) # store original input image # masked_original_image = gr.State(value=None) # store masked input image mask_logits = gr.State(value=None) # store mask logits depth = gr.State(value=None) # store depth org_depth_image = gr.State(value=None) # store original depth image camera_pose = gr.State(value=None) # store camera pose rescale = gr.Slider(minimum=0.0, maximum=10, step=0.1, value=1.0, label="Rescale", interactive=True, visible=False) angle = gr.Slider(minimum=-360, maximum=360, step=1, value=60, label="Angle", interactive=True, visible=False) seed = gr.Textbox(value = "42", label="Seed", interactive=True, visible=False) scale_wise_masks = gr.Checkbox(label="Enable Scale-wise Masks", interactive=True, value=True, visible=False) ds = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.25, label="ds", interactive=True, visible=False) dt = gr.Slider(minimum=0.0, maximum=1, step=0.1, value=0.1, label="dt", interactive=True, visible=False) with gr.Column(): outlines = """ There are total 5 steps to complete the task. - Step 1: Input an image and Crop it to a suitable size and attained depth; - Step 2: Attain the subject mask; - Step 3: Draw trajectory on depth map or skip to use camera pose; - Step 4: Select camera poses or skip. - Step 5: Generate the final video. """ gr.Markdown(outlines) with gr.Row(): with gr.Column(): # Step 1: Input Image step1_dec = """ Step 1: Input Image """ step1 = gr.Markdown(step1_dec) raw_input = ImagePrompter(type="pil", label="Raw Image", show_label=True, interactive=True) step1_notes = """ - Select the region using a bounding box, aiming for a ratio close to 320:576 (height:width). - If the input is in 320 x 576, press `Process` directly. """ notes = gr.Markdown(step1_notes) process_button = gr.Button("Process") with gr.Column(): # Step 2: Get Subject Mask step2_dec = """ Step 2: Get Subject Mask """ step2 = gr.Markdown(step2_dec) canvas = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True) # for mask painting step2_notes = """ - Use the bounding boxes or points to select the subject. - Press `Segment Subject` to get the mask. Can be refined iteratively by updating points. """ notes = gr.Markdown(step2_notes) select_button = gr.Button("Segment Subject") with gr.Column(): # Step 3: Get Depth and Draw Trajectory step3_dec = """ Step 3: Draw Trajectory on Depth or SKIP """ step3 = gr.Markdown(step3_dec) depth_image = gr.Image(type="pil", label="Depth Image", show_label=True, interactive=False) step3_dec = """ - Selecting points on the depth image. No more than 14 points. - Press `Undo point` to remove all points. Press `Traj2Cam` to get camera poses. """ notes = gr.Markdown(step3_dec) undo_button = gr.Button("Undo point") traj2cam_button = gr.Button("Traj2Cam") with gr.Row(): with gr.Column(): # Step 4: Trajectory to Camera Pose or Get Camera Pose step4_dec = """ Step 4: Get Customized Camera Poses or Skip """ step4 = gr.Markdown(step4_dec) camera_pose_vis = gr.Plot(None, label='Camera Pose') camera_option = gr.Radio(choices = CAMERA_MODE, label='Camera Options', value=CAMERA_MODE[0], interactive=True) speed = gr.Slider(minimum=0.1, maximum=10, step=0.1, value=4.0, label="Speed", interactive=True, visible=True) with gr.Column(): # Step 5: Get the final generated video step5_dec = """ Step 5: Get the final generated video """ step5 = gr.Markdown(step5_dec) generated_video = gr.Video(None, label='Generated Video') # with gr.Row(): bg_mode = gr.Radio(choices = ["Fixed", "Reverse", "Free"], label="Background Mode", value="Fixed", interactive=True) shared_wapring_latents = gr.Checkbox(label="Enable Shared Warping Latents", interactive=True, value=False, visible=True) generated_button = gr.Button("Generate") get_mid_params_button = gr.Button("Get Mid Params") # # event definition process_button.click( fn = process_image, inputs = [raw_input, selected_points], outputs = [original_image, canvas, depth, depth_image, org_depth_image] ) select_button.click( segment, [canvas, original_image, mask_logits], [mask, canvas, mask_logits] ) depth_image.select( get_points, [depth_image, selected_points], [depth_image, selected_points], ) undo_button.click( undo_points, [org_depth_image], [depth_image, selected_points] ) traj2cam_button.click( traj2cam, [selected_points, depth, rescale], [camera_pose, camera_pose_vis, rescale, camera_option] ) camera_option.change( get_camera_pose(CAMERA_MODE), [camera_option, depth, mask, rescale, angle, speed], [camera_pose, camera_pose_vis, rescale] ) generated_button.click( run_objctrl_2_5d, [ original_image, mask, depth, camera_pose, bg_mode, shared_wapring_latents, scale_wise_masks, rescale, seed, ds, dt, # num_inference_steps ], [generated_video], ) get_mid_params_button.click( get_mid_params, [raw_input, canvas, mask, selected_points, camera_option, bg_mode, shared_wapring_latents, generated_video] ) ## Get examples with open('./assets/examples/examples.json', 'r') as f: examples = json.load(f) print(examples) # examples = [examples] examples = [v for k, v in examples.items()] gr.Examples( examples=examples, inputs=[ raw_input, raw_image_points, canvas, seg_image_points, mask_bk, selected_points_text, # selected_points camera_option, bg_mode, shared_wapring_latents, generated_video ], examples_per_page=20 ) selected_points_text.change( from_examples, inputs=[raw_input, raw_image_points, canvas, seg_image_points, selected_points_text, camera_option, mask_bk], outputs=[original_image, mask, depth, depth_image, org_depth_image, camera_pose, camera_pose_vis, rescale, selected_points, raw_input, canvas] ) gr.Markdown(article) demo.queue().launch(share=True)