from ultralytics import YOLO import gradio as gr import cv2 import os import random model = YOLO('best.pt') def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path, conf=0.45, save=True) print("output:", outputs) results = outputs[0] print("results:", results) # for i, det in enumerate(results.boxes.xyxy.cpu().numpy()): # cv2.rectangle( # image, # (int(det[0]), int(det[1])), # (int(det[2]), int(det[3])), # color=(random.randint(0,255), random.randint(0,255), random.randint(0,255)), # thickness=2, # lineType=cv2.LINE_AA # ) return f"runs/detect/predict/{os.path.split(image_path)[-1]}" inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.components.Image(type="filepath", label="Output Image"), ] interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Cats and Dogs detector", cache_examples=False, ) gr.TabbedInterface( [interface_image], tab_names=['Image inference'] ).queue().launch()