zaeemzafar's picture
Update app.py
1ae2696 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model and tokenizer
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("valeriojob/MedGPT-Llama3.1-8B-BA-v.1")
model = AutoModelForCausalLM.from_pretrained("valeriojob/MedGPT-Llama3.1-8B-BA-v.1")
def respond_to_query(user_input):
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
# Generate a response from the model
with torch.no_grad():
response_ids = model.generate(input_ids, max_length=150, num_return_sequences=1)
response = tokenizer.decode(response_ids[0], skip_special_tokens=True)
return response
# Create a Gradio interface
iface = gr.Interface(fn=respond_to_query,
inputs="text",
outputs="text",
title="MedGPT Chatbot",
description="Ask your medical questions to MedGPT!")
if __name__ == "__main__":
iface.launch()