Spaces:
Sleeping
Sleeping
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn.metrics import accuracy_score, f1_score | |
from sklearn.metrics import confusion_matrix | |
import torch | |
def extract_hidden_state(input_text, tokenizer, language_model): | |
tokens = tokenizer(input_text, padding=True, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = language_model(**tokens) | |
return outputs.last_hidden_state[:,0].numpy() | |
def get_metrics(y_true, y_preds): | |
accuracy = accuracy_score(y_true, y_preds) | |
f1_macro = f1_score(y_true, y_preds, average="macro") | |
f1_weighted = f1_score(y_true, y_preds, average="weighted") | |
print(f"Accuracy: {accuracy}") | |
print(f"F1 macro average: {f1_macro}") | |
print(f"F1 weighted average: {f1_weighted}") | |
def evaluate_predictions(model:str, train_preds, y_train, test_preds, y_test): | |
print(model) | |
print("\nTrain set:") | |
get_metrics(y_train, train_preds) | |
print("-"*50) | |
print("Test set:") | |
get_metrics(y_test, test_preds) | |
def plot_confusion_matrix(y_true, y_preds): | |
labels = sorted(set(y_true.tolist() + y_preds.tolist())) | |
cm = confusion_matrix(y_true, y_preds) | |
plt.figure(figsize=(12, 10)) | |
sns.heatmap(cm, annot=True, cmap="Blues", | |
xticklabels=labels, yticklabels=labels) | |
plt.xlabel('Predicted Label') | |
plt.ylabel('True Label') | |
plt.title('Confusion Matrix') | |
plt.show() |