Spaces:
Sleeping
Sleeping
retraining models for evaluation
Browse files- src/classifier.ipynb +137 -3
src/classifier.ipynb
CHANGED
@@ -10,9 +10,18 @@
|
|
10 |
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
-
"execution_count":
|
14 |
"metadata": {},
|
15 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"source": [
|
17 |
"import pickle\n",
|
18 |
"\n",
|
@@ -723,7 +732,7 @@
|
|
723 |
},
|
724 |
{
|
725 |
"cell_type": "code",
|
726 |
-
"execution_count":
|
727 |
"metadata": {},
|
728 |
"outputs": [],
|
729 |
"source": [
|
@@ -776,6 +785,131 @@
|
|
776 |
"source": [
|
777 |
"## 3. Evaluating the Performance"
|
778 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
779 |
}
|
780 |
],
|
781 |
"metadata": {
|
|
|
10 |
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
"metadata": {},
|
15 |
+
"outputs": [
|
16 |
+
{
|
17 |
+
"name": "stderr",
|
18 |
+
"output_type": "stream",
|
19 |
+
"text": [
|
20 |
+
"/home/mehdi/miniconda3/envs/adc/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
21 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
"source": [
|
26 |
"import pickle\n",
|
27 |
"\n",
|
|
|
732 |
},
|
733 |
{
|
734 |
"cell_type": "code",
|
735 |
+
"execution_count": 4,
|
736 |
"metadata": {},
|
737 |
"outputs": [],
|
738 |
"source": [
|
|
|
785 |
"source": [
|
786 |
"## 3. Evaluating the Performance"
|
787 |
]
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"cell_type": "markdown",
|
791 |
+
"metadata": {},
|
792 |
+
"source": [
|
793 |
+
"First, let's retrain the models with the best parameters we obtained."
|
794 |
+
]
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"cell_type": "code",
|
798 |
+
"execution_count": 5,
|
799 |
+
"metadata": {},
|
800 |
+
"outputs": [
|
801 |
+
{
|
802 |
+
"data": {
|
803 |
+
"text/html": [
|
804 |
+
"<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
805 |
+
" multi_class='multinomial', random_state=2024)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LogisticRegression</label><div class=\"sk-toggleable__content\"><pre>LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
806 |
+
" multi_class='multinomial', random_state=2024)</pre></div></div></div></div></div>"
|
807 |
+
],
|
808 |
+
"text/plain": [
|
809 |
+
"LogisticRegression(class_weight='balanced', max_iter=1000,\n",
|
810 |
+
" multi_class='multinomial', random_state=2024)"
|
811 |
+
]
|
812 |
+
},
|
813 |
+
"execution_count": 5,
|
814 |
+
"metadata": {},
|
815 |
+
"output_type": "execute_result"
|
816 |
+
}
|
817 |
+
],
|
818 |
+
"source": [
|
819 |
+
"lr_model = LogisticRegression(multi_class='multinomial', \n",
|
820 |
+
" class_weight=\"balanced\", \n",
|
821 |
+
" max_iter=1000, \n",
|
822 |
+
" random_state=2024)\n",
|
823 |
+
"lr_model.fit(X_train, y_train)"
|
824 |
+
]
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"cell_type": "code",
|
828 |
+
"execution_count": 6,
|
829 |
+
"metadata": {},
|
830 |
+
"outputs": [
|
831 |
+
{
|
832 |
+
"data": {
|
833 |
+
"text/html": [
|
834 |
+
"<style>#sk-container-id-2 {color: black;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestClassifier(class_weight='balanced', max_depth=8, n_estimators=400,\n",
|
835 |
+
" random_state=2024)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" checked><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestClassifier</label><div class=\"sk-toggleable__content\"><pre>RandomForestClassifier(class_weight='balanced', max_depth=8, n_estimators=400,\n",
|
836 |
+
" random_state=2024)</pre></div></div></div></div></div>"
|
837 |
+
],
|
838 |
+
"text/plain": [
|
839 |
+
"RandomForestClassifier(class_weight='balanced', max_depth=8, n_estimators=400,\n",
|
840 |
+
" random_state=2024)"
|
841 |
+
]
|
842 |
+
},
|
843 |
+
"execution_count": 6,
|
844 |
+
"metadata": {},
|
845 |
+
"output_type": "execute_result"
|
846 |
+
}
|
847 |
+
],
|
848 |
+
"source": [
|
849 |
+
"rf_model = RandomForestClassifier(class_weight=\"balanced\", \n",
|
850 |
+
" random_state=2024,\n",
|
851 |
+
" n_estimators=400,\n",
|
852 |
+
" max_depth=8)\n",
|
853 |
+
"rf_model.fit(X_train, y_train)"
|
854 |
+
]
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"cell_type": "code",
|
858 |
+
"execution_count": 7,
|
859 |
+
"metadata": {},
|
860 |
+
"outputs": [
|
861 |
+
{
|
862 |
+
"data": {
|
863 |
+
"text/html": [
|
864 |
+
"<style>#sk-container-id-3 {color: black;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-3\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
|
865 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
866 |
+
" colsample_bytree=None, device='cuda', early_stopping_rounds=None,\n",
|
867 |
+
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
868 |
+
" gamma=None, grow_policy=None, importance_type=None,\n",
|
869 |
+
" interaction_constraints=None, learning_rate=0.1, max_bin=None,\n",
|
870 |
+
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
871 |
+
" max_delta_step=None, max_depth=7, max_leaves=None,\n",
|
872 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
873 |
+
" multi_strategy=None, n_estimators=450, n_jobs=None,\n",
|
874 |
+
" num_parallel_tree=None, objective='multi:softprob', ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" checked><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
|
875 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
876 |
+
" colsample_bytree=None, device='cuda', early_stopping_rounds=None,\n",
|
877 |
+
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
878 |
+
" gamma=None, grow_policy=None, importance_type=None,\n",
|
879 |
+
" interaction_constraints=None, learning_rate=0.1, max_bin=None,\n",
|
880 |
+
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
881 |
+
" max_delta_step=None, max_depth=7, max_leaves=None,\n",
|
882 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
883 |
+
" multi_strategy=None, n_estimators=450, n_jobs=None,\n",
|
884 |
+
" num_parallel_tree=None, objective='multi:softprob', ...)</pre></div></div></div></div></div>"
|
885 |
+
],
|
886 |
+
"text/plain": [
|
887 |
+
"XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
|
888 |
+
" colsample_bylevel=None, colsample_bynode=None,\n",
|
889 |
+
" colsample_bytree=None, device='cuda', early_stopping_rounds=None,\n",
|
890 |
+
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
891 |
+
" gamma=None, grow_policy=None, importance_type=None,\n",
|
892 |
+
" interaction_constraints=None, learning_rate=0.1, max_bin=None,\n",
|
893 |
+
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
894 |
+
" max_delta_step=None, max_depth=7, max_leaves=None,\n",
|
895 |
+
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
896 |
+
" multi_strategy=None, n_estimators=450, n_jobs=None,\n",
|
897 |
+
" num_parallel_tree=None, objective='multi:softprob', ...)"
|
898 |
+
]
|
899 |
+
},
|
900 |
+
"execution_count": 7,
|
901 |
+
"metadata": {},
|
902 |
+
"output_type": "execute_result"
|
903 |
+
}
|
904 |
+
],
|
905 |
+
"source": [
|
906 |
+
"xgb_model = xgb.XGBClassifier(device=\"cuda\", \n",
|
907 |
+
" seed=2024,\n",
|
908 |
+
" n_estimators=450,\n",
|
909 |
+
" max_depth=7,\n",
|
910 |
+
" learning_rate=0.1)\n",
|
911 |
+
"xgb_model.fit(X_train, y_train_encoded)"
|
912 |
+
]
|
913 |
}
|
914 |
],
|
915 |
"metadata": {
|