Spaces:
Sleeping
Sleeping
defining structure and reading data
Browse files- src/classifier.ipynb +252 -3
src/classifier.ipynb
CHANGED
@@ -1,16 +1,265 @@
|
|
1 |
{
|
2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
}
|
10 |
],
|
11 |
"metadata": {
|
|
|
|
|
|
|
|
|
|
|
12 |
"language_info": {
|
13 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
}
|
15 |
},
|
16 |
"nbformat": 4,
|
|
|
1 |
{
|
2 |
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Arabic Dialect Classifier\n",
|
8 |
+
"This notebook contains the training of the classifier model."
|
9 |
+
]
|
10 |
+
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
"metadata": {},
|
15 |
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"import pandas as pd"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {},
|
23 |
+
"source": [
|
24 |
+
"## 1. Exploring the Dataset"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 5,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"df_train = pd.read_csv(\"../data/DA_train_labeled.tsv\", sep=\"\\t\")\n",
|
34 |
+
"df_test = pd.read_csv(\"../data/DA_dev_labeled.tsv\", sep=\"\\t\")"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 6,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [
|
42 |
+
{
|
43 |
+
"data": {
|
44 |
+
"text/html": [
|
45 |
+
"<div>\n",
|
46 |
+
"<style scoped>\n",
|
47 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
48 |
+
" vertical-align: middle;\n",
|
49 |
+
" }\n",
|
50 |
+
"\n",
|
51 |
+
" .dataframe tbody tr th {\n",
|
52 |
+
" vertical-align: top;\n",
|
53 |
+
" }\n",
|
54 |
+
"\n",
|
55 |
+
" .dataframe thead th {\n",
|
56 |
+
" text-align: right;\n",
|
57 |
+
" }\n",
|
58 |
+
"</style>\n",
|
59 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
60 |
+
" <thead>\n",
|
61 |
+
" <tr style=\"text-align: right;\">\n",
|
62 |
+
" <th></th>\n",
|
63 |
+
" <th>#1_tweetid</th>\n",
|
64 |
+
" <th>#2_tweet</th>\n",
|
65 |
+
" <th>#3_country_label</th>\n",
|
66 |
+
" <th>#4_province_label</th>\n",
|
67 |
+
" </tr>\n",
|
68 |
+
" </thead>\n",
|
69 |
+
" <tbody>\n",
|
70 |
+
" <tr>\n",
|
71 |
+
" <th>0</th>\n",
|
72 |
+
" <td>TRAIN_0</td>\n",
|
73 |
+
" <td>ุญุงุฌุฉ ุญููุฉ ุงููุฏ</td>\n",
|
74 |
+
" <td>Egypt</td>\n",
|
75 |
+
" <td>eg_Faiyum</td>\n",
|
76 |
+
" </tr>\n",
|
77 |
+
" <tr>\n",
|
78 |
+
" <th>1</th>\n",
|
79 |
+
" <td>TRAIN_1</td>\n",
|
80 |
+
" <td>ุนู
ุจุดุชุบููุง ููุดุนุจ ุงูุงู
ูุฑูู ุงู
ุง ูุญู ููุฐุจูุง ููุบุดู...</td>\n",
|
81 |
+
" <td>Iraq</td>\n",
|
82 |
+
" <td>iq_Dihok</td>\n",
|
83 |
+
" </tr>\n",
|
84 |
+
" <tr>\n",
|
85 |
+
" <th>2</th>\n",
|
86 |
+
" <td>TRAIN_2</td>\n",
|
87 |
+
" <td>ุงุจุดุฑ ุทุงู ุนู
ุฑู</td>\n",
|
88 |
+
" <td>Saudi_Arabia</td>\n",
|
89 |
+
" <td>sa_Ha'il</td>\n",
|
90 |
+
" </tr>\n",
|
91 |
+
" <tr>\n",
|
92 |
+
" <th>3</th>\n",
|
93 |
+
" <td>TRAIN_3</td>\n",
|
94 |
+
" <td>ู
ูุทู 2017: ุฃูุง ูุงูุบุฑูุจ ุนูู ุฅุจู ุนู
ู ูุฃูุง ูุงูุบุฑู...</td>\n",
|
95 |
+
" <td>Mauritania</td>\n",
|
96 |
+
" <td>mr_Nouakchott</td>\n",
|
97 |
+
" </tr>\n",
|
98 |
+
" <tr>\n",
|
99 |
+
" <th>4</th>\n",
|
100 |
+
" <td>TRAIN_4</td>\n",
|
101 |
+
" <td>ุดูุฑูู ูุชุฑูุญ ูุงูุจุงูู ุบูุฑ ุตูู ู
ูููุง</td>\n",
|
102 |
+
" <td>Algeria</td>\n",
|
103 |
+
" <td>dz_El-Oued</td>\n",
|
104 |
+
" </tr>\n",
|
105 |
+
" </tbody>\n",
|
106 |
+
"</table>\n",
|
107 |
+
"</div>"
|
108 |
+
],
|
109 |
+
"text/plain": [
|
110 |
+
" #1_tweetid #2_tweet \\\n",
|
111 |
+
"0 TRAIN_0 ุญุงุฌุฉ ุญููุฉ ุงููุฏ \n",
|
112 |
+
"1 TRAIN_1 ุนู
ุจุดุชุบููุง ููุดุนุจ ุงูุงู
ูุฑูู ุงู
ุง ูุญู ููุฐุจูุง ููุบุดู... \n",
|
113 |
+
"2 TRAIN_2 ุงุจุดุฑ ุทุงู ุนู
ุฑู \n",
|
114 |
+
"3 TRAIN_3 ู
ูุทู 2017: ุฃูุง ูุงูุบุฑูุจ ุนูู ุฅุจู ุนู
ู ูุฃูุง ูุงูุบุฑู... \n",
|
115 |
+
"4 TRAIN_4 ุดูุฑูู ูุชุฑูุญ ูุงูุจุงูู ุบูุฑ ุตูู ู
ูููุง \n",
|
116 |
+
"\n",
|
117 |
+
" #3_country_label #4_province_label \n",
|
118 |
+
"0 Egypt eg_Faiyum \n",
|
119 |
+
"1 Iraq iq_Dihok \n",
|
120 |
+
"2 Saudi_Arabia sa_Ha'il \n",
|
121 |
+
"3 Mauritania mr_Nouakchott \n",
|
122 |
+
"4 Algeria dz_El-Oued "
|
123 |
+
]
|
124 |
+
},
|
125 |
+
"execution_count": 6,
|
126 |
+
"metadata": {},
|
127 |
+
"output_type": "execute_result"
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"df_train.head()"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": 7,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [
|
139 |
+
{
|
140 |
+
"data": {
|
141 |
+
"text/html": [
|
142 |
+
"<div>\n",
|
143 |
+
"<style scoped>\n",
|
144 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
145 |
+
" vertical-align: middle;\n",
|
146 |
+
" }\n",
|
147 |
+
"\n",
|
148 |
+
" .dataframe tbody tr th {\n",
|
149 |
+
" vertical-align: top;\n",
|
150 |
+
" }\n",
|
151 |
+
"\n",
|
152 |
+
" .dataframe thead th {\n",
|
153 |
+
" text-align: right;\n",
|
154 |
+
" }\n",
|
155 |
+
"</style>\n",
|
156 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
157 |
+
" <thead>\n",
|
158 |
+
" <tr style=\"text-align: right;\">\n",
|
159 |
+
" <th></th>\n",
|
160 |
+
" <th>#1_tweetid</th>\n",
|
161 |
+
" <th>#2_tweet</th>\n",
|
162 |
+
" <th>#3_country_label</th>\n",
|
163 |
+
" <th>#4_province_label</th>\n",
|
164 |
+
" </tr>\n",
|
165 |
+
" </thead>\n",
|
166 |
+
" <tbody>\n",
|
167 |
+
" <tr>\n",
|
168 |
+
" <th>0</th>\n",
|
169 |
+
" <td>DEV_0</td>\n",
|
170 |
+
" <td>ููููุง ุงูู ูุงูู ูุง ูุง ุนูู ุงูู ูุงูู ูุง</td>\n",
|
171 |
+
" <td>Egypt</td>\n",
|
172 |
+
" <td>eg_Alexandria</td>\n",
|
173 |
+
" </tr>\n",
|
174 |
+
" <tr>\n",
|
175 |
+
" <th>1</th>\n",
|
176 |
+
" <td>DEV_1</td>\n",
|
177 |
+
" <td>ููููู ุจุงูุฎู ููููู URL ย โฆ</td>\n",
|
178 |
+
" <td>Oman</td>\n",
|
179 |
+
" <td>om_Muscat</td>\n",
|
180 |
+
" </tr>\n",
|
181 |
+
" <tr>\n",
|
182 |
+
" <th>2</th>\n",
|
183 |
+
" <td>DEV_2</td>\n",
|
184 |
+
" <td>ุฑุจูุง ูุฎููู ูุง ุฏูู ููู ุงูู
ุซู :D</td>\n",
|
185 |
+
" <td>Lebanon</td>\n",
|
186 |
+
" <td>lb_South-Lebanon</td>\n",
|
187 |
+
" </tr>\n",
|
188 |
+
" <tr>\n",
|
189 |
+
" <th>3</th>\n",
|
190 |
+
" <td>DEV_3</td>\n",
|
191 |
+
" <td>#ุงูุงู
ุฑ_ู
ูููู ูุงุดุจุงุจ ุงู ูุงุญุฏ ูููู
ุนูุฏู ุดู ูุฐูุฑู...</td>\n",
|
192 |
+
" <td>Syria</td>\n",
|
193 |
+
" <td>sy_Damascus-City</td>\n",
|
194 |
+
" </tr>\n",
|
195 |
+
" <tr>\n",
|
196 |
+
" <th>4</th>\n",
|
197 |
+
" <td>DEV_4</td>\n",
|
198 |
+
" <td>ุดุฏ ุนุงูุฎุท ุญุชู ููุง ุงูููุณู</td>\n",
|
199 |
+
" <td>Libya</td>\n",
|
200 |
+
" <td>ly_Misrata</td>\n",
|
201 |
+
" </tr>\n",
|
202 |
+
" </tbody>\n",
|
203 |
+
"</table>\n",
|
204 |
+
"</div>"
|
205 |
+
],
|
206 |
+
"text/plain": [
|
207 |
+
" #1_tweetid #2_tweet \\\n",
|
208 |
+
"0 DEV_0 ููููุง ุงูู ูุงูู ูุง ูุง ุนูู ุงูู ูุงูู ูุง \n",
|
209 |
+
"1 DEV_1 ููููู ุจุงูุฎู ููููู URL ย โฆ \n",
|
210 |
+
"2 DEV_2 ุฑุจูุง ูุฎููู ูุง ุฏูู ููู ุงูู
ุซู :D \n",
|
211 |
+
"3 DEV_3 #ุงูุงู
ุฑ_ู
ูููู ูุงุดุจุงุจ ุงู ูุงุญุฏ ูููู
ุนูุฏู ุดู ูุฐูุฑู... \n",
|
212 |
+
"4 DEV_4 ุดุฏ ุนุงูุฎุท ุญุชู ููุง ุงูููุณู \n",
|
213 |
+
"\n",
|
214 |
+
" #3_country_label #4_province_label \n",
|
215 |
+
"0 Egypt eg_Alexandria \n",
|
216 |
+
"1 Oman om_Muscat \n",
|
217 |
+
"2 Lebanon lb_South-Lebanon \n",
|
218 |
+
"3 Syria sy_Damascus-City \n",
|
219 |
+
"4 Libya ly_Misrata "
|
220 |
+
]
|
221 |
+
},
|
222 |
+
"execution_count": 7,
|
223 |
+
"metadata": {},
|
224 |
+
"output_type": "execute_result"
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"source": [
|
228 |
+
"df_test.head()"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "markdown",
|
233 |
+
"metadata": {},
|
234 |
+
"source": [
|
235 |
+
"## 2. Training the Classifier"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "markdown",
|
240 |
+
"metadata": {},
|
241 |
+
"source": [
|
242 |
+
"## 3. Evaluating the Performance"
|
243 |
+
]
|
244 |
}
|
245 |
],
|
246 |
"metadata": {
|
247 |
+
"kernelspec": {
|
248 |
+
"display_name": "adc",
|
249 |
+
"language": "python",
|
250 |
+
"name": "python3"
|
251 |
+
},
|
252 |
"language_info": {
|
253 |
+
"codemirror_mode": {
|
254 |
+
"name": "ipython",
|
255 |
+
"version": 3
|
256 |
+
},
|
257 |
+
"file_extension": ".py",
|
258 |
+
"mimetype": "text/x-python",
|
259 |
+
"name": "python",
|
260 |
+
"nbconvert_exporter": "python",
|
261 |
+
"pygments_lexer": "ipython3",
|
262 |
+
"version": "3.11.7"
|
263 |
}
|
264 |
},
|
265 |
"nbformat": 4,
|