romanbredehoft-zama's picture
Add descriptions and fix comments
747c295
raw
history blame
8.96 kB
"""A gradio app for credit card approval prediction using FHE."""
import subprocess
import time
import gradio as gr
from settings import (
REPO_DIR,
ACCOUNT_MIN_MAX,
CHILDREN_MIN_MAX,
INCOME_MIN_MAX,
AGE_MIN_MAX,
SALARIED_MIN_MAX,
FAMILY_MIN_MAX,
INCOME_TYPES,
OCCUPATION_TYPES,
HOUSING_TYPES,
EDUCATION_TYPES,
FAMILY_STATUS,
)
from backend import (
keygen_send,
pre_process_encrypt_send_user,
pre_process_encrypt_send_bank,
pre_process_encrypt_send_third_party,
run_fhe,
get_output,
decrypt_output,
)
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
time.sleep(3)
demo = gr.Blocks()
print("Starting the demo...")
with demo:
gr.Markdown(
"""
<h1 align="center">Encrypted Credit Card Approval Prediction Using Fully Homomorphic Encryption</h1>
"""
)
gr.Markdown("# Client side")
gr.Markdown("## Step 1: Generate the keys.")
gr.Markdown(
"""
- The private key is used to encrypt and decrypt the data and shall never be shared.
- The evaluation key is a public key that the server needs to process encrypted data. It is
therefore transmitted to the server for further processing as well.
"""
)
keygen_button = gr.Button("Generate the keys and send evaluation key to the server.")
evaluation_key = gr.Textbox(
label="Evaluation key representation:", max_lines=2, interactive=False
)
client_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
gr.Markdown("## Step 2: Fill in some information.")
gr.Markdown(
"""
Select any information that corresponds to the profile you want to evaluate. Three
dissociated parties are represented :
- the user, which provides some personal information in order to evaluate its credit card
eligibility
- the user's bank, which provides any of the user's banking information relevant to the
decision
- a third party, which represents any other party (here, the user's employer) that could
provide any information relevant to the decision
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("### User")
gender = gr.Radio(["Female", "Male"], label="Gender", value="Female")
bool_inputs = gr.CheckboxGroup(["Car", "Property", "Work phone", "Phone", "Email"], label="What do you own ?")
num_children = gr.Slider(**CHILDREN_MIN_MAX, step=1, label="Number of children", info="How many children do you have ?")
household_size = gr.Slider(**FAMILY_MIN_MAX, step=1, label="Household size", info="How many members does your household have? ?")
total_income = gr.Slider(**INCOME_MIN_MAX, label="Income", info="What's you total yearly income (in euros) ?")
age = gr.Slider(**AGE_MIN_MAX, step=1, label="Age", info="How old are you ?")
income_type = gr.Dropdown(choices=INCOME_TYPES, value=INCOME_TYPES[0], label="Income type", info="What is your main type of income ?")
education_type = gr.Dropdown(choices=EDUCATION_TYPES, value=EDUCATION_TYPES[0], label="Education", info="What is your education background ?")
family_status = gr.Dropdown(choices=FAMILY_STATUS, value=FAMILY_STATUS[0], label="Family", info="What is your family status ?")
occupation_type = gr.Dropdown(choices=OCCUPATION_TYPES, value=OCCUPATION_TYPES[0], label="Occupation", info="What is your main occupation ?")
housing_type = gr.Dropdown(choices=HOUSING_TYPES, value=HOUSING_TYPES[0], label="Housing", info="In what type of housing do you live ?")
with gr.Column():
gr.Markdown("### Bank ")
account_length = gr.Slider(**ACCOUNT_MIN_MAX, step=1, label="Account length", info="How long have this person had this account (in months) ?")
with gr.Column():
gr.Markdown("### Third party ")
salaried = gr.Radio(["Yes", "No"], label="Is the person salaried ?", value="Yes")
years_salaried = gr.Slider(**SALARIED_MIN_MAX, step=1, label="Years of employment", info="How long have this person been salaried (in years) ?")
gr.Markdown("## Step 3: Encrypt the inputs using FHE and send them to the server.")
with gr.Row():
with gr.Column():
gr.Markdown("### User")
encrypt_button_user = gr.Button("Encrypt the inputs and send to server.")
encrypted_input_user = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
with gr.Column():
gr.Markdown("### Bank ")
encrypt_button_bank = gr.Button("Encrypt the inputs and send to server.")
encrypted_input_bank = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
with gr.Column():
gr.Markdown("### Third Party ")
encrypt_button_third_party = gr.Button("Encrypt the inputs and send to server.")
encrypted_input_third_party = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
gr.Markdown("# Server side")
gr.Markdown(
"""
Once the server receives the encrypted inputs, it can compute the prediction without ever
needing to decrypt any value.
This server employs an [XGBoost](https://github.com/dmlc/xgboost) classifier model that has
been trained on [this credit card data-set](https://www.kaggle.com/datasets/rikdifos/credit-card-approval-prediction/data).
"""
)
gr.Markdown("## Step 4: Run FHE execution.")
execute_fhe_button = gr.Button("Run FHE execution.")
fhe_execution_time = gr.Textbox(
label="Total FHE execution time (in seconds):", max_lines=1, interactive=False
)
gr.Markdown("# Client side")
gr.Markdown(
"""
Once the server completed the inference, the encrypted output is returned to the user.
"""
)
gr.Markdown("## Step 5: Receive the encrypted output from the server.")
gr.Markdown(
"""
The value displayed below is a shortened byte representation of the actual encrypted output.
"""
)
get_output_button = gr.Button("Receive the encrypted output from the server.")
encrypted_output_representation = gr.Textbox(
label="Encrypted output representation: ", max_lines=2, interactive=False
)
gr.Markdown("## Step 6: Decrypt the output.")
gr.Markdown(
"""
The user is able to decrypt the prediction using its private key.
"""
)
decrypt_button = gr.Button("Decrypt the output")
prediction_output = gr.Textbox(
label="Prediction", max_lines=1, interactive=False
)
# Button generate the keys
keygen_button.click(
keygen_send,
outputs=[client_id, evaluation_key, keygen_button],
)
# Button to pre-process, generate the key, encrypt and send the user inputs from the client
# side to the server
encrypt_button_user.click(
pre_process_encrypt_send_user,
inputs=[client_id, gender, bool_inputs, num_children, household_size, total_income, age, \
income_type, education_type, family_status, occupation_type, housing_type],
outputs=[encrypted_input_user],
)
# Button to pre-process, generate the key, encrypt and send the bank inputs from the client
# side to the server
encrypt_button_bank.click(
pre_process_encrypt_send_bank,
inputs=[client_id, account_length],
outputs=[encrypted_input_bank],
)
# Button to pre-process, generate the key, encrypt and send the third party inputs from the
# client side to the server
encrypt_button_third_party.click(
pre_process_encrypt_send_third_party,
inputs=[client_id, salaried, years_salaried],
outputs=[encrypted_input_third_party],
)
# Button to send the encodings to the server using post method
execute_fhe_button.click(run_fhe, inputs=[client_id], outputs=[fhe_execution_time])
# Button to send the encodings to the server using post method
get_output_button.click(
get_output,
inputs=[client_id],
outputs=[encrypted_output_representation],
)
# Button to decrypt the output
decrypt_button.click(
decrypt_output,
inputs=[client_id],
outputs=[prediction_output],
)
gr.Markdown(
"The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a "
"Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). "
"Try it yourself and don't forget to star on Github &#11088;."
)
demo.launch(share=False)