romanbredehoft-zama's picture
Fix comments and imlearn version
999f0b2
raw
history blame
8.18 kB
"""A gradio app for credit card approval prediction using FHE."""
import subprocess
import time
import gradio as gr
from settings import (
REPO_DIR,
ACCOUNT_MIN_MAX,
CHILDREN_MIN_MAX,
INCOME_MIN_MAX,
AGE_MIN_MAX,
EMPLOYED_MIN_MAX,
FAMILY_MIN_MAX,
INCOME_TYPES,
OCCUPATION_TYPES,
HOUSING_TYPES,
EDUCATION_TYPES,
FAMILY_STATUS,
)
from backend import (
pre_process_keygen_encrypt_send_user,
pre_process_keygen_encrypt_send_bank,
pre_process_keygen_encrypt_send_third_party,
run_fhe,
get_output,
decrypt_output,
)
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
time.sleep(3)
demo = gr.Blocks()
print("Starting the demo...")
with demo:
gr.Markdown(
"""
<h1 align="center">Credit Card Approval Prediction Using Fully Homomorphic Encryption</h1>
"""
)
gr.Markdown("## Client side")
gr.Markdown("### Step 1: Infos. ")
with gr.Row():
with gr.Column():
gr.Markdown("### User")
gender = gr.Radio(["Female", "Male"], label="Gender")
bool_inputs = gr.CheckboxGroup(["Car", "Property", "Work phone", "Phone", "Email"], label="What do you own ?")
num_children = gr.Slider(**CHILDREN_MIN_MAX, step=1, label="Number of children", info="How many children do you have (0 to 19) ?")
num_family = gr.Slider(**FAMILY_MIN_MAX, step=1, label="Family", info="How many members does your family have? (1 to 20) ?")
total_income = gr.Slider(**INCOME_MIN_MAX, label="Income", info="What's you total yearly income (in euros, 3780 to 220500) ?")
age = gr.Slider(**AGE_MIN_MAX, step=1, label="Age", info="How old are you (20 to 68) ?")
income_type = gr.Dropdown(choices=INCOME_TYPES, label="Income type", info="What is your main type of income ?")
education_type = gr.Dropdown(choices=EDUCATION_TYPES, label="Education", info="What is your education background ?")
family_status = gr.Dropdown(choices=FAMILY_STATUS, label="Family", info="What is your family status ?")
occupation_type = gr.Dropdown(choices=OCCUPATION_TYPES, label="Occupation", info="What is your main occupation ?")
housing_type = gr.Dropdown(choices=HOUSING_TYPES, label="Housing", info="In what type of housing do you live ?")
with gr.Column():
gr.Markdown("### Bank ")
account_length = gr.Slider(**ACCOUNT_MIN_MAX, step=1, label="Account length", info="How long have this person had this account (in months, 0 to 60) ?")
with gr.Column():
gr.Markdown("### Third party ")
employed = gr.Radio(["Yes", "No"], label="Is the person employed ?")
years_employed = gr.Slider(**EMPLOYED_MIN_MAX, step=1, label="Years of employment", info="How long have this person been employed (in years, 0 to 43) ?")
gr.Markdown("### Step 2: Keygen, encrypt using FHE and send the inputs to the server.")
with gr.Row():
with gr.Column():
gr.Markdown("### User")
encrypt_button_user = gr.Button("Encrypt the inputs and send to server.")
user_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
encrypted_input_user = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
# keys_user = gr.Textbox(
# label="Keys representation:", max_lines=2, interactive=False
# )
with gr.Column():
gr.Markdown("### Bank ")
encrypt_button_bank = gr.Button("Encrypt the inputs and send to server.")
bank_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
encrypted_input_bank = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
# keys_bank = gr.Textbox(
# label="Keys representation:", max_lines=2, interactive=False
# )
with gr.Column():
gr.Markdown("### Third Party ")
encrypt_button_third_party = gr.Button("Encrypt the inputs and send to server.")
third_party_id = gr.Textbox(label="", max_lines=2, interactive=False, visible=False)
encrypted_input_third_party = gr.Textbox(
label="Encrypted input representation:", max_lines=2, interactive=False
)
# keys_3 = gr.Textbox(
# label="Keys representation:", max_lines=2, interactive=False
# )
gr.Markdown("## Server side")
gr.Markdown(
"The encrypted values are received by the server. The server can then compute the prediction "
"directly over them. Once the computation is finished, the server returns "
"the encrypted result to the client."
)
gr.Markdown("### Step 6: Run FHE execution.")
execute_fhe_button = gr.Button("Run FHE execution.")
fhe_execution_time = gr.Textbox(
label="Total FHE execution time (in seconds):", max_lines=1, interactive=False
)
gr.Markdown("## Client side")
gr.Markdown(
"The encrypted output is sent back to the client, who can finally decrypt it with the "
"private key."
)
gr.Markdown("### Step 7: Receive the encrypted output from the server.")
gr.Markdown(
"The output displayed here is the encrypted result sent by the server, which has been "
"decrypted using a different private key. This is only used to visually represent an "
"encrypted output."
)
get_output_button = gr.Button("Receive the encrypted output from the server.")
# encrypted_output_representation = gr.Textbox(
# label="Encrypted output representation: ", max_lines=1, interactive=False
# )
gr.Markdown("### Step 8: Decrypt the output.")
decrypt_button = gr.Button("Decrypt the output")
prediction_output = gr.Textbox(
label="Credit card approval decision: ", max_lines=1, interactive=False
)
# Button to pre-process, generate the key, encrypt and send the user inputs from the client
# side to the server
encrypt_button_user.click(
pre_process_keygen_encrypt_send_user,
inputs=[gender, bool_inputs, num_children, num_family, total_income, age, income_type, \
education_type, family_status, occupation_type, housing_type],
outputs=[user_id, encrypted_input_user],
)
# Button to pre-process, generate the key, encrypt and send the bank inputs from the client
# side to the server
encrypt_button_bank.click(
pre_process_keygen_encrypt_send_bank,
inputs=[account_length],
outputs=[bank_id, encrypted_input_bank],
)
# Button to pre-process, generate the key, encrypt and send the third party inputs from the
# client side to the server
encrypt_button_third_party.click(
pre_process_keygen_encrypt_send_third_party,
inputs=[employed, years_employed],
outputs=[third_party_id, encrypted_input_third_party],
)
# TODO : ID should be unique
# Button to send the encodings to the server using post method
execute_fhe_button.click(run_fhe, inputs=[user_id, bank_id, third_party_id], outputs=[fhe_execution_time])
# TODO : ID should be unique
# Button to send the encodings to the server using post method
get_output_button.click(
get_output,
inputs=[user_id, bank_id, third_party_id],
# outputs=[encrypted_output_representation]
)
# TODO : ID should be unique
# Button to decrypt the output as the user
decrypt_button.click(
decrypt_output,
inputs=[user_id, bank_id, third_party_id],
outputs=[prediction_output],
)
gr.Markdown(
"The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a "
"Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). "
"Try it yourself and don't forget to star on Github &#11088;."
)
demo.launch(share=False)